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Abstract— Prior work has shown that frame rate significantly influences user behavior in fast-response tasks in 2D and 3D contexts.
However, its impact on a steering task, which involves navigating an object along a path from the start to the end, remains relatively
unexplored, especially in the context of virtual reality (VR). This task is considered a typical non-fast-response activity, as it does not
demand rapid reactions within a limited time frame. Our work aims to understand and model users’ steering behavior and predict
movement time with different task complexities and frame rates in VR environments. We first conducted a user study to collect user
behavior in a steering task with four factors: frame rate, path length, width, and radius of curvature. Based on the results, we then
quantified the effects of frame rate and built two predictive models. Our models exhibited the best fit (r2 > 0.957) and over 17%
improvement in prediction accuracy for movement time compared to existing models. Our models’ robustness was further validated by
applying them to predict steering performance with different VR tasks and frame rates. The two models keep the best predictability for
both movement time and speed.

Index Terms—Virtual reality; human performance modeling; steering law; frame rate; head-mounted display

1 INTRODUCTION

Path steering is one of the most common and fundamental tasks in
both 2D and 3D scenarios. In this task, the user is required to move
an object, like a cursor, stylus, or controller-based pointer, along the
entire length of a path with different shapes. Specifically, steering tasks
are manifested in numerous contexts, such as implementing sliding
and navigation features in touch screen applications [30], integrating
gesture recognition techniques in mobile applications [49], and using
brush control mechanisms in graphic design software [33].

To gain a deeper understanding of user behavior in steering tasks,
Accot and Zhai [3] introduced the steering law model, which is derived
from Fitts’ law and is intended to help predict movement time (MT ).
Their model effectively explains the effects of path length and width
on MT . However, due to the increasing diversity of interaction tasks,
the explanatory capacity of the original steering law model has become
inadequate to meet the demands of more contemporary tasks. Therefore,
various refined models built upon the original steering law paradigm
have been proposed to cover more specific attributes such as path scale
and curvature [62,66]. These refined models extend the applicability of
the steering law to a broader array of contexts, enhancing its predictive
and explanatory power for MT .

Since steering law tasks are very common on 2D touchscreens or
monitors (e.g., smartphones and personal computers), most proposed
models primarily focus on interactions within the 2D context. Recently,
virtual reality (VR) head-mounted display (HMD) technologies have
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witnessed rapid growth. VR HMDs immerse users in interactive digital
3D environments that simulate real-world experiences. The immer-
sive 3D virtual environments (VEs) provide unique interactions and
experiences that are significantly different from conventional 2D sur-
face interactions [27, 70]. This technological progress has expanded
to various fields, including gaming [32], training [61], education [28],
and medicine [34, 51]. However, the suitability of steering law in such
3D task environments and its validity in VR HMDs have still not been
thoroughly investigated.

Compared to 2D interaction scenarios, in addition to their inherent
interactivity, there are other factors that may significantly affect user
interaction behavior and experience in VR HMDs. One of these factors
is the frame rate [55], i.e., the number of discrete images shown to
the user’s eyes per second, measured in frames per second (fps). A
monitor’s maximum achievable frame rate is constrained by its refresh
rate (measured in Hertz, Hz), which refers to the number of times
per second the monitor can refresh the screen [38]. The variability
in frame rates can result in different levels of latency [56]. While
latency and frame rates are not directly equivalent, previous research
has demonstrated that lower frame rates tend to be associated with
higher visual lag [56]. Specifically, frame rate and the latency it caused
in a VR system would affect user motor performance [45]. A low
frame rate and the accompanying latency might weaken users’ ability
to execute precise movements, experience immersion, and interact
effectively with VE. First, low frame rates hinder the accuracy of fine
motor control, undermining users’ ability to judge and adjust their
movements accurately [56]. Second, Claypool et al. [17] showed that
users’ responsiveness decreased due to low frame rates, causing a
disconnect between real-world actions and virtual feedback. Further,
the learning processes can also be hampered, limiting the acquisition
of motor skills and muscle memory [72]. In scenarios where real-
time decision-making and precise motor control are crucial, such as
virtual surgery simulations, safety can be compromised by low frame
rates [48, 72].

Besides, frame rates brought more challenges to immersive 3D VEs
in VR HMDs. Within an immersive VE, the frame rate exerts a more
pronounced influence on user behavior compared to using a 2D screen-
based device [55], of which the screen’s frame rate only influences a
limited interaction space while the frame rate controls and influences
all the rendered visual elements surrounding the users in an immersive
VE. On the other hand, the impact of the frame rate is non-uniform
and uncertain due to the diversification of VR headsets. The default
refresh rate of a headset equipped with differs, as summarized in Fig. 1.
Moreover, frame rates in practical applications are often reduced and
fluctuating because of the hardware device performance limitations and
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Fig. 1: A stacked bar chart depicting the quantity of VR HMDs by refresh
rates, categorized by their released dates [12].

programs’ complexity. This reduction and fluctuation can occur, for
instance, in scenarios where the game scene is highly complex or when
running programs with extensive computational demands.

In summary, while some studies have investigated the influence of
frame rate and the caused visual lag on human behavior in immersive
3D VEs, these studies have primarily focused on tasks that require rapid
responses within short time frames. In such contexts, achieving superior
performance needs immediate reaction and action, as illustrated in
games like Fruit Ninja and First Person Shooter, where participants
must swiftly cut fruits or shoot enemies as soon as they appear on the
screen [44, 55]. The time constraints inherent in these tasks inevitably
impose mental pressure on users, limiting their capacity to perceive and
interact with objects in the surrounding environment, which has been
demonstrated can significantly affect human behaviors and the final
results in human factor-based research [63,68]. Thus, these findings are
not directly transferable to non-fast-response tasks where users have
the flexibility to decide the interaction process without any time-limited
requirements, such as menu manipulation and object relocation. 1

Therefore, when validating the applicability of the steering law, a typical
non-fast-response task, in VR HMDs, it is necessary to reconsider the
effect of frame rate. This would improve the accuracy and usefulness
of systems created by practitioners, designers, and engineers.

In this paper, to confirm the applicability of the steering law in
immersive VR environments and refine the original model to have
stronger prediction capabilities at varying frame rates, a user study
(N = 24) was conducted to examine how factors including path length,
width, curvature radius, and frame rate could affect movement time,
success rate, and average movement speed during the steering task
(Sec. 4). According to the collected data, we quantified the effects
of frame rate and proposed two refined predictive models (Sec. 5).
Finally, we conducted another user study (N = 15) to collect more user
behavior data within a tracing task to compare our models with those
showing the best performance in previous works (Sec. 6). The results
demonstrated that our models have the highest predictive accuracy for
both movement time and average movement speed.

In short, our contributions are:

• Empirically demonstrate the influence of frame rate on user be-
havior within the context of steering tasks.

• Ascertain that user behavior in VR steering tasks, much like in
2D scenarios, is significantly affected by path length, width, and
curvature.

1In this paper, non-fast response tasks refer to tasks that do not have a high
cognitive demand for users to react and respond in a short interval of time. Please
note that the completion time of fast-response tasks is typically short, while the
completion time of non-fast-response tasks does not have to be long. That said,
the total time required for task completion is not a criterion for distinguishing
between these two types of tasks.

• Confirm the suitability of the steering law model in immersive
VR environments.

• Introduce two novel models that predict users’ movement time
and speed under varying frame rates and path characteristics.

2 RELATED WORK

In this section, we delve into diverse models derived from the steering
law, adapted to address distinct application-specific scenarios. We sub-
sequently provide a concise overview of the resultant impact stemming
from frame rate fluctuations on users’ behavior, which inspired us to
build our frame-rate-based models.

2.1 Steering Law

Movement time MT , representing the duration from the initiation of
movement for the selection to the completion, is one of the most com-
monly used metrics for evaluating users’ performance in different tasks.
MT was first modeled by Fitts’ law [23]—the well-known model used
to predict users’ motor behaviors and time spent during the pointing se-
lection process based on the index of difficulty (ID), which is calculated
using target width (W ) and amplitude (A) (see Eq. (1) [36]).

MT = a+b · ID = a+b log2

(
A
W

)
(1)

While Fitts’ law delineates the relation between MT and ID for
pointing tasks exclusively, Accot and Zhai [3] further proposed the
steering law that retains the purpose of Fitts’ law but generalizes it to
trajectory-based movement unconstrained by path configurations, such
as a path with a spiral, circular, or constrained shape (see Eq. (2)).

MTC = a+b · ID = a+b
∫

C

dx
W (x)

(2)

In Eq. (2), a and b are empirical constants, C is defined as the
path length parameterized by x, and W (x) signifies the path width at
specified position x. Eq. (2) is denoted as the ‘global law’ predicting
the aggregate temporal duration requisite for the steering procedure.
In case the path is straight and has a constant width, the model can be
simplified as:

MT = a+b
A
W

(3)

Based on this first modeling for straight paths, researchers have
proposed several extended models to explain the steering behavior for
irregular paths. For example, Liu et al. [35] conducted two user studies
to evaluate, validate, and model how the curvature radius R and orien-
tation can impact the steering performance in desktop-based 3D VEs.
Their results showed that an increased path curvature would propor-
tionately prolong the task completion time, which is consistent with
previous work on Fitts’ law [9]. Moreover, in terms of the influence
exerted by curvature on the celerity of locomotion, Montazer et al. [39]
demonstrated a positive correlation between speed V and curvature
radius R. The correlation has also been substantiated empirically by
Nancel and Lank [42], who further proposed a refined model consider-
ing the effect of arbitrary curvature variations along constrained paths.
They employed kinematic theory, two-thirds power law, and minimum
jerk model in the steering law [24,31,53]. Although the same trend has
been proven by the aforementioned works [35, 39, 42], there is still a
lack of consistent formulations regarding the curvature radius R. There-
fore, Yamanaka and Miyashita [66] posited their model (see Eq. (4),
c and d in the equation are another two empirical constants) to better
understand human steering processes and behavioral patterns with dif-
ferent R through a more consistent approach, demonstrating a superior
capability of predicting MT for various steering behaviors.

MT = a+b
A

W + c(1/R)+dW (1/R)
(4)
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2.2 Application of Steering Law in 2D and 3D Environments
The role of trajectory-based steering tasks, such as pursuit tracking,
drawing, and writing, has become increasingly important in the last
decade. There have been extensive discussions about applying the
steering law in 2D user interfaces (UIs) and applications, such as op-
timizing hierarchical menus [6], introducing force feedback [20], and
understanding the effects of scale [5], start position [71], and devices in
steering tasks [4,46]. Though some work has studied steering law in 3D
UIs, there is limited understanding of applying it in immersive VEs. For
example, Zhai et al. [69] have applied the formula in a locomotion task
within a VE simulated through a conjunct of contiguous 2D projections
fully enveloping participants. Nonetheless, this approach cannot be con-
sidered an optimal immersive VR configuration, given the interaction
discrepancies between HMDs-based and 2D-based VEs [15, 40, 59].

Even though the steering law has been deeply investigated and ap-
plied in 2D applications, the virtual environment, such as interacting
with objects at different depth planes, and the limitations of the VR
HMDs, such as nonphysical support of mid-air interaction and stereo
deficiencies, raises new challenges for steering law in 3D. Thus, re-
searchers, such as Liu et al. [35], extended the steering law to 3D
environments. However, due to technological limitations, the scope of
their study was constrained exclusively to desktop-based 3D VEs [35].
The disparities between two types of VEs have already been demon-
strated [10]. Furthermore, several studies have used the steering law
in VEs primarily as an analytical tool to assess user performance with-
out explicitly addressing its inherent applicability within VEs. For
instance, Monteiro et al. [41] used the steering law to evaluate and com-
pare the performance of various VR navigation interfaces. Similarly,
Wolf et al. [60] examined input methods for circular steering tasks in
augmented reality (AR) HMDs.

Therefore, considering the absence of previous research in rigorously
evaluating the steering law in fully immersive VEs and the limited un-
derstanding of its suitability within 3D UIs, there is a compelling need
for further investigation. It is crucial to delve into the implications of
applying the steering law within VEs and devise strategies to effectively
adapt it to accommodate the distinctive attributes of VR HMD devices
and 3D UIs.

2.3 Frame Rate, Refresh Rate, and Latency
Frame rate and refresh rate are commonly used to represent the extent
of smoothness and continuity of display and interaction [73]. The
upper threshold of the display refresh rate and the maximum rendering
frame rate frequency of the graphics card (GPU) typically constrain
the maximum level of perceptible displaying smoothness by the naked
eye [25, 55]. Moreover, the impact of latency on user behavior and
performance is typically associated with frame rate, where higher frame
rates generally lead to lower visual lag [55, 56]. Unlike the unstable
latency caused by the program or hardware performance, this visual
delay raised by frame rate is usually fixed and only affected by the
rendering frequency between two frames [13].

Nowadays, considerable attention has been devoted to determining
the minimum frame rate requirements for optimal human performance
across various tasks. The frame rate with high rendering frequencies
typically requires high-performance hardware, such as a high-capacity
GPU and a high refresh rate display, which can often entail substantial
costs [14, 55]. Currently, several studies have identified 10 fps as the
minimum threshold for human performance in 2D UIs and immersive
VEs [13, 37, 57, 58]. Although a 10-fps frame rate may suffice as a
benchmark for certain applications, it should not be construed as ap-
plicable to all systems and applications. This is because the minimum
frame rate requirements for optimal performance can vary substantially,
such as grasping virtual objects with 7 Hz [43] and rendering com-
plex graphics with 6 Hz [7], in accordance with the distinct content
attributes.

More relevant to our research is that, with the upgrade of display
technology and the increasing requirement for smoother and clearer dis-
plays [19, 21], numerous researchers have paid attention to measuring
the effects on users’ behaviors between different performances of dis-
plays [17,50,54]. Typically, higher frame rates with lower fixed latency

tend to result in reduced simulator sickness [29, 55] and improved user
performance in target-reaching tasks [56] and driving training [67]. For
example, in PC first-person shooter video games, Claypool et al. [16]
proved that frame rates below 30 fps can significantly decrease the
player’s experience and performance. Moreover, Claypool and Clay-
pool [17] showed that user performance can vary up to seven times
between 60 fps and frame rates ranging from 3 to 7 fps. This pattern
is also demonstrated within 3D application scenarios. Wang et al.’s
results indicated that users exhibited enhanced performance across
various tasks when exposed to higher frame rates (e.g., 120 to 180
fps) in comparison to lower frame rates (e.g., 60 fps) [55]. It is worth
noting that some studies showed results contrary to the aforementioned
conclusions. For instance, Ware and Balakrishnan [56] indicated frame
rates exceeding 10 fps did not significantly improve user performance
for target localization tasks. Given that the aforementioned outcomes
stem from diverse tasks and application contexts, they align with the
earlier depiction that frame rates wield distinct effects on users’ be-
haviors across various tasks and application scenarios. Consequently,
engaging in a dedicated discourse and modeling the steering task within
3D immersive VEs is important, given the growing popularity of VR
HMDs.

3 RESEARCH QUESTIONS

Although previous studies analyzed the effects of frame rate, they
mostly focused on fast response or timing-limited tasks in 2D scenarios.
In addition, they typically investigate to discover the minimal frame
rate threshold for comfortable interactions or observe the behaviors
only. However, the effects of frame rate on non-fast-response tasks
have not been well discussed in both 2D and 3D contexts. To better
understand whether frame rate has an impact on user behavior in non-
fast-response tasks in immersive VEs, we collected user performance
data in a steering task, a typical non-fast-response task, under different
frame rates and path features. Our work aims to seek answers to the
following research questions (RQs):

RQ1: Does the variation in frame rates exert an influence on users’
performance in steering tasks in immersive VEs? Previous studies
have presented divergent conclusions regarding the influence of frame
rates on user behavior. The prevailing consensus among most inves-
tigations shows a positive correlation between user performance and
frame rates [16, 18]. However, results from studies, e.g., Ware and
Balakrishnan. [56], have indicated that no discernible association exists
between frame rates and user performance when frame rates exceed
a certain threshold. As described in Sec. 2.3, researchers considered
this incongruity could be attributed to the disparate effects that varying
frame rates exert on distinct tasks. In immersive VEs, although em-
pirical evidence has established that higher frame rates enhance user
performance, these findings are predominantly situated within gaming
contexts [55]. Given the inherent distinctions between the steering task
and typical gaming contexts, it is important to examine the applicability
of such conclusions to the steering task paradigm.

RQ2: How do the path features, including path lengths, widths, and
radii of curvature, affect user performance in a steering task in VR
HMDs? Previous steering law research conducted in 2D environments
has demonstrated that a reduced task difficulty caused by a smaller
path curvature radius, a shorter or a wider path, generally resulted in
improved user performance within speed and accuracy [5,42]. However,
the applicability of these conclusions to immersive VR scenarios, which
have different visualizations and input paradigms compared to 2D
environments, remains unclear.

RQ3: How applicable is the steering law to immersive VEs? The
steering law has been applied across various contexts in prior research,
mostly in 2D environments [3, 5]. Although certain studies have in-
corporated its usage within 3D/VR environments, these instances have
been hindered by technological limitations. Consequently, disparities
persist between its application in those contexts and the contemporary
immersive VEs [35, 69]. Moreover, while certain studies have taken
into account the integration of the steering law paradigm within immer-
sive VEs, this research has exclusively employed the steering law as
an analytical tool without conducting individualized experimentation
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and analyzing the steering law (e.g., [41,60]). Therefore, the unverified
suitability of the steering law within immersive VEs requires further
investigation.

RQ4: If the effect of frame rate is observed on users’ behavior
in steering tasks, can this effect be formalized through mathematical
modeling? Refining models’ performance by employing modeling to
summarize the effect on users’ performance is one of the most funda-
mental topics of human-computer interaction studies. Previous research
has derived models and extended the steering law to various complex
scenarios [62, 66]. If the answers to RQ1-3 confirm the existence of
an impact from frame rates on user behavior, we also want to explore
the feasibility of encapsulating user behavior through mathematical
modeling. Such models will enhance the explanatory capacity of the
steering law, thereby fostering a more robust comprehension of user
behavior.

4 USER STUDY

This user study aims to collect data on different categories for hand-
based steering tasks at varied frame rates in VR HMDs. This allows us
to understand better how the frame rates and path features (path length,
width, and curvature radius) affect users’ steering behaviors.

4.1 Participants

Twenty-four participants (14 females and 10 males) were recruited
from a local university. Their ages ranged from 19 to 25 (M = 20.325,
SD = 1.378). All participants could clearly see all objects in the scene.
Ten of them had prior experience with VR HMDs for 0-5 hours per
week, eight used the device for 5-10 hours per week, and six reported
had never used a VR device before.

4.2 Apparatus

We used a Pimax 5K Super2 for this study, which features a refresh
rate of 180 Hz—exceeding that of all other currently available VR
devices [55]. The headset has a resolution of 2560 × 1440 (2.5K) per
eye, a horizontal field of view (FoV) of 170◦, and a vertical FoV of
115◦. We used a Windows 10 PC with an Intel Core i9 processor, 64 GB
RAM, and an NVIDIA RTX 3090 graphic card, to power the VR HMD.
The experimental program was implemented in C# in Unity3D (version
2022.3.01f) with SteamVR PlugIn (version 2.2.0). The participants
used an HTC Vive controller for interaction, which was tracked by two
SteamVR 2.0 Base Stations.

4.2.1 Eliminating the Potential Latency Effects

Three approaches were adopted to eliminate the potential effect caused
by the additional latency, i.e., waiting for software or network process-
ing and limited performance of hardware: (1) The Pimax 5K Super is
equipped with a refresh rate of 180 Hz, which is higher than or equal
to the frame rate conditions we set up (which we will introduce in
Sec. 4.4). Thus, throughout the user study, the headset was capable
of consistently and accurately rendering the VE in each frame rate
condition without additional visual lag caused by the HMD. (2) Two
SteamVR 2.0 Base Stations were employed to track hand motion dur-
ing the task. Their tracking frequency reaches 1000 Hz, significantly
surpassing the refresh rate of the headset [2]. This ensures rendering
consistency and eliminates latency discrepancies between the controller
and the HMD, even in high-frame-rate conditions in the user study.
(3) The program is structured as a single-threaded procedure without
network requirement by the Unity game engine, with all operations
contained within the Update() function, which is invoked once per
frame [1]. Briefly, in Unity, the Update() function precedes rendering,
ensuring that all operations are processed before frames are rendered.
More importantly, the experimental program was executed on a high-
performance PC with robust hardware capabilities, which ensured that
all data were processed in a time shorter than the interval between
each frame [50]. This approach effectively minimizes the likelihood of
varying delays at different frame rates.

2https://support.pimax.com/en/support/home

Fig. 2: The path width is defined by the sum of the diameters of the target
ball and the cursor ball. The dotted lines represent where the cursor
ball can be moved to push the target ball (TOP). The path configurations
regarding curvature radii (R) and path lengths (A) (BOTTOM).

4.3 Task and Stimuli

In our work, we used a similar task described by Liu et al. [35]. Par-
ticipants sat completing the given task. The task contained a steering
mechanism employed in a VE. In each trial, a steering path was instan-
tiated at a distance of 40 cm in front of the center of the participants’
FoV. The target ball was attached to the steering law and positioned
at its left end. The cursor ball was positioned directly in front of the
controller with a diameter of 10 mm. In each trial, participants were
required to control the cursor ball to push the target ball through the
entire path (i.e., from the left initial to the right end). They received
visual and haptic feedback based on the position of the target ball on
the line and the occasion when the cursor and the target ball collided
(the controller vibrates 0.1 s with each collision), respectively. The
stimuli were ascertained by a pilot study for optimal suitability. During
the trial, participants were not allowed to reset the process and repeat it
anew within a single trial once it had commenced, regardless of their
actual or perceived performance falling short of their expectations [62].
Additionally, participants were consistently instructed to prioritize both
speed and accuracy while performing each trial.

4.4 Design and Procedure
The user study employed a 3×2×3×8 within-subjects design with
four independent variables, resulting in 144 conditions in total:

• Path Length (A): 350 mm, 400 mm, and 450 mm

• Path Width (W ): 40 mm, and 80 mm

• Radius of Path Curvature (R): 100000 mm (approximate straight
path), 250 mm, and 150 mm

• Frame Rate (F): 30 fps, 60 fps, 75 fps, 90 fps, 105 fps, 120 fps,
150 fps, and 180 fps

The final width (i.e., path width W ) was calculated by
adding twice the radius of the cursor ball to the diameter of
the target ball (path width = diameter o f target ball + 2 ×
radius o f cursor ball) [35]. It represented the maximum width a
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cursor ball could push the target ball; that is, the cursor ball was right
above or below the collided target ball (see Fig. 2. TOP). All conditions
were evaluated in a pilot study. We ensured that there was no overlap
between the start and end positions in each A, W , and R combination.
Besides, an R of 100000 mm could be recognized as an approximate
straight path.

As the refresh rate would impose an upper limit on the frame rate,
our experiment was designed to maintain alignment between the refresh
rate and the frame rate, thus allowing us to exercise control over the
frame rates.

Specifically, we followed Wang et al.’s approach to control and
build the frame rates in the experiments accurately [55]. We set the
maximum frame rate and refresh rate through the NVIDIA control panel
and Pimax control panel on the computer, respectively. In addition,
we monitored the frame rates in both SteamVR and Unity, which
collectively ensured the accuracy of the operating frame rates.

We applied two strategies to select the frame rate as our experimental
conditions.

First, we chose six frame rates ranging from 30 fps to 180 fps with
an interval of 30 fps. While 30 and 60 Hz might not be the dominant
refresh rate for VR headsets, they are widely used in PC monitors; as
such, participants would be familiar with them. We decided to include
them because prior research had shown that the familiarity of frame
rate could directly impact users’ performance in immersive VEs with
fast response task [55]. Concurrently, as evidenced in Fig. 1, the most
commonly employed refresh rate for VR headsets is 90 Hz, serving as
the predominant and most frequently encountered rate by VR HMD
users.

The 120 Hz refresh rate has emerged as another popular option,
with numerous new VR headsets incorporating this rate. Furthermore,
144 Hz is the prevailing refresh rate for high-refresh-rate PC displays,
though it is currently infrequent for VR HMDs. However, to maintain
consistent intervals between variables, we opted for 150 fps as our
experimental condition. The current maximum refresh rate for VR
headsets is 180 Hz, so an upper limit was also set for the frame rate in
the experiments. Second, we further added 75 fps and 105 fps into our
study; that is, the intermediates between 60 fps, 90 fps, and 120 fps.
Wang et al. [55] found user performance at 90 fps was worse than at 60
fps and 120 fps in fast-response game-based scenarios. We wanted to
explore whether a similar phenomenon occurs in fast-response tasks
with more details. Thus, we included these two frame rates as our
experimental conditions and had eight F conditions in total.

Given that frame rate (F) was our primary independent variable, the
order of F was first counterbalanced across participants following a
Latin Square approach. Within each F condition, the order of R was
then counterbalanced across F conditions and participants. Finally,
within each F ×R condition, the order of A×W combination was
randomly arranged and included five repetitions. This condition was
simulated to reflect a scenario where participants consistently estimated
F for each condition and responded to various steering paths with
different complexities. In sum, a total of 17280 trials were recorded (3
A × 2 W × 3 R × 8 F × 5 repetitions × 24 participants).

The whole user study lasted about 50 minutes for each participant.
We aimed to prevent potential distortions in the results caused by par-
ticipant disengagement and fatigue in repetitive tasks [68]. Therefore,
participants were instructed to take breaks between two F conditions
until they were ready to proceed with the experiment. As a result, all
participants consistently reported minimal or no fatigue throughout the
user study.

Participants were first invited to complete a questionnaire to collect
their demographic information. Subsequently, they were introduced
to the VR device and the required task. Afterward, participants pro-
ceeded to wear the VR headset and initiate the practice trials, with the
freedom to practice as many times as needed until they felt sufficiently
prepared to commence the formal experiment (the training session took
approximately five minutes). Once the participants were ready, they
started to complete the formal trials. After participants completed all
the experiments, we assessed their opinions and past experiences with
each frame rate through an interview.

In summary, all the aforementioned approaches aimed to enhance
the fidelity, reproducibility, and generalizability of the experiment by
simulating real-application scenarios and evaluating users’ behaviors
in the VR steering tasks within varying frame rates.

4.5 Measurements
Three categories of data were logged after each trial, including move-
ment time, success rate, and average movement speed.3

• Movement Time signifies the duration to accomplish a steering
task from the start to the end position through the path. It has
extensive application and modeling in various steering-based
tasks [3, 35, 66].

• Success Rate is defined as the number of trials completed without
interruptions (continuous contact between the cursor ball and the
target ball) divided by the total number of trials.

• Average Movement Speed is the average speed at which a partic-
ipant completes the whole steering task. Previous studies showed
that the average movement speed is not synonymous with in-
stantaneous speed (the speed at a specific path position) [47] but
substantiated the approximation of the two for evaluation and
modeling [26, 58, 66]. Therefore, in consonance with previous
works, we also employed average movement speed as the metric
in our study.

4.6 Results
We applied a two-step approach to remove outliers. First, we removed
trials in which movement time exceeded 10 seconds. Through this
process, 218 trials were removed (1.26% of total number of trials).
Afterward, 224 trials (1.29%) that deviated by three times standard
deviations from the averaged results in movement time and average
movement speed were removed. In total, 442 data trials were removed
from the results, representing 2.55% of the total trials.

We ran repeated-measures ANOVA (RM-ANOVA) tests to examine
the three dependent variables. We used the Greenhouse-Geisser to
adjust the degree of freedom if the assumption of sphericity is vio-
lated. Post-hoc pairwise comparisons were conducted using T-tests
with Bonferroni corrections.

4.6.1 Movement Time
We found F (F2.385,47.696 = 40.533, p < 0.001,η2

p = 0.670),
R (F1.162,23.250 = 93.291, p < 0.001,η2

p = 0.823), A (F2,40 =

163.467, p < 0.001,η2
p = 0.891) and W (F1,20 = 401.332, p <

0.001,η2
p = 0.953) had significant main effects on movement time.

Additionally, significant interaction effects of F ×R (F5.948,118.958 =

6.460, p < 0.001,η2
p = 0.244), F × W (F4.393,87.853 = 5.649, p <

0.001,η2
p = 0.220), R × A (F2.225,44.498 = 11.468, p < 0.001,η2

p =

0.364), R×W (F2,40 = 15.245, p < 0.001,η2
p = 0.433), and A×W

(F2,40 = 14.689, p < 0.001,η2
p = 0.423) were found.

In terms of F , movement time at a 30 fps frame rate exhibited
statistical significance by surpassing those at 60 fps (∆ (difference of
means) = 320ms, p = 0.005), 75 fps (∆ = 503ms, p = 0.001), 90 fps
(∆= 656ms, p< 0.001), 105 fps (∆= 749ms, p< 0.001), 120 fps (∆=
767ms, p < 0.001), 150 fps (∆ = 787ms, p < 0.001) and 180 fps (∆ =
766ms, p < 0.001). Movement time at 60 fps was significantly longer
than 90 fps (∆ = 335ms, p = 0.005), 105 fps (∆ = 429ms, p < 0.001),
120 fps (∆ = 446ms, p < 0.001), 150 fps (∆ = 464ms, p < 0.001)
and 180 fps (∆ = 446s, p < 0.001). The frame rate at 75 fps also
showed a significantly longer movement time than 105 fps (∆ = 246ms,
p = 0.001), 120 fps (∆ = 263ms, p = 0.001), 150 fps (∆ = 281ms,
p < 0.001) and 180 fps (∆ = 263s, p < 0.001).

3To improve the readability, we do not use abbreviations MT and V for
movement time and average movement speed in Sections 4.5 and 4.6, where we
discuss the effects of frame rate and path characteristics. Please note that we
use these abbreviations later in Section 5 for mathematical representations.
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Fig. 3: Movement time (MT ) for the variables that showed a significant
main effect. The error bars show the standard errors. ‘n.s.’ and ‘***’
indicate p > 0.05 and p < 0.001, respectively. All effects, excluding those
indicated as ‘n.s.’, demonstrated statistical significance with a p-value
less than 0.05 at least.

Fig. 4: Average movement speed for the variables that showed a signifi-
cant main effect. The error bars show the standard error. ‘***’ indicates
p < 0.001. All effects, excluding those indicated as ‘n.s.’, demonstrated
statistical significance with a p-value less than 0.05 at least.

Fig. 5: Success rates for the variables that showed a significant main
effect (except for R). The error bars show the standard errors. ‘*’ indicates
p < 0.05

In regard to factor R, significant variations are apparent among differ-
ent conditions. Notably, when the R is 150 mm, the corresponding time
expenditure significantly surpasses where the R is 250 mm (∆ = 690ms,
p < 0.001) or 100000 mm (∆ = 1066ms, p < 0.001). Furthermore, for
R equating to 250 mm, the time allocation demonstrates a significant
elevation compared to instances when R is 100000 mm (∆ = 376ms,
p < 0.001). Within the factor A, the longest duration is observed at a
length of 450 mm, which notably exceeds the movement time observed
at lengths of 400 mm (∆= 165ms, p< 0.001) and 350 mm (∆= 395ms,
p < 0.001). Moreover, a statistically significant distinction also exists
between lengths of 400 mm and 350 mm (∆ = 230ms, p < 0.001).
Within W , a statistically significant increase in movement time was
observed when the W was 40 mm, in contrast to the scenario where it
was 80 mm (∆ = 532ms, p < 0.001). These results were summarized
in Fig. 3.

4.6.2 Success Rate
Results of RM-ANOVAs showed that F (F7,140 = 2.831, p =

0.009,η2
p = 0.124) and W (F1,20 = 5.021, p = 0.037,η2

p = 0.201) had
significant main effects on success rate. Moreover, RM-ANOVA also
revealed interaction effects of R×W (F2,40 = 4.192, p < 0.024,η2

p =
0.173) on success rate.

Although factor F demonstrated a significant main effect in the
RM-ANOVA on success rate, post-hoc pairwise comparisons did not
reveal a significant difference between different frame rates. Addition-
ally, within the factor of W , a significant increase in success rate was
observed when W equaled 80 mm in contrast to 40 mm (∆ = 3.8%,
p = 0.035). The success rate results are shown in Fig. 5.

4.6.3 Average Movement Speed
RM-ANOVA revealed F (F7,140 = 31.928, p < 0.001,η2

p = 0.615),
R (F1.295,25.905 = 98.666, p < 0.001,η2

p = 0.831) and W (F1,20 =

295.834, p < 0.001,η2
p = 0.937) had significant main effects on av-

erage movement speed. The significant interaction effects were found
between F ×R (F14,280 = 1.848, p = 0.032,η2

p = 0.085), and between
F ×W (F7,140 = 3.008, p = 0.006,η2

p = 0.131). R also revealed a sig-
nificant interaction effect with A (R×A: F4,80 = 5.928, p< 0.001,η2

p =

0.229), W (W ×A: F1.336,26.727 = 24.815, p < 0.001,η2
p = 0.554) and

A ×W (R × A ×W : F4,80 = 3.327, p = 0.026,η2
p = 0.143). More-

over, RM-ANOVA results also showed interaction effects of A×W
(F2,40 = 4.571, p = 0.017,η2

p = 0.186) on average movement speed.
The results of pairwise comparisons demonstrated that, at a F of 30

fps, the average movement speed significantly decreased in comparison
to 60 fps (∆ = 0.029, p = 0.004), 75 fps (∆ = 0.056, p < 0.001), 90

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3451491

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Xi'an Jiaotong-Liverpool University. Downloaded on October 31,2024 at 14:27:14 UTC from IEEE Xplore.  Restrictions apply. 



fps (∆ = 0.075, p < 0.001), 105 fps (∆ = 0.096, p < 0.001), 120 fps
(∆ = 0.090, p < 0.001), 150 fps (∆ = 0.096, p < 0.001), and 180
fps (∆ = 0.038, p < 0.001). Furthermore, a statistically significant
reduction in average movement speed was observed at 60 fps compared
to 90 fps (∆ = 0.045, p = 0.002), 105 fps (∆ = 0.067, p < 0.001), 120
fps (∆ = 0.061, p < 0.001), 150 fps (∆ = 0.066, p < 0.001) and 180
fps (∆ = 0.053, p < 0.001). This decrease was also observed at 75 fps
compared to 105 fps (∆ = 0.040, p = 0.029), 120 fps (∆ = 0.034, p =
0.013), 150 fps (∆ = 0.039, p = 0.011), 180 fps (∆ = 0.025, p = 0.04).

In terms of factor R, when the R was set to 100000 mm, average
movement speed exhibited a significant increase when contrasted with
250 mm (∆ = 0.118, p < 0.001) and 150 mm (∆ = 0.169, p < 0.001).
Additionally, within factor W , a significant deceleration in average
movement speed was revealed when W equaled 40 mm, as opposed to
80 mm (∆ = 0.102, p < 0.001). These results are visualized in Fig. 4.

4.6.4 Subjective Feedback
In addition to the collected user behavior data, we conducted interviews
with participants at the end of the experiment to gather their subjective
insights and feelings about the interactions at different frame rates.
Through the interview, participants reported that even though the order
of frame rates was counterbalanced and the experimenter did not inform
them about the frame rate used in each task, they were still able to
perceive a distinct contrast between 30 fps, 60 fps, and higher frame
rates. However, they could not discern differences between high frame
rates, ranging from 90 fps to 180 fps. Some participants even suggested
that there was no perceivable difference between two adjacent high
frame rate conditions, such as 150 fps and 180 fps.

4.7 Discussion
4.7.1 Answers to RQ1: the Effects of Frame Fate on Steering

Performance in Immersive VEs
Our results indicate a negative relationship between the F and move-
ment time, suggesting that a higher frame rate is accompanied by
a shorter completion time in the steering task in immersive VEs
(see Fig. 3). This pattern is also reflected in the success rate, where a
general trend emerges with higher F values corresponding to a higher
success rate (see Fig. 5). The average movement speed follows the
aforementioned trend, exhibiting significantly higher speeds as the
frame rate increases (see Fig. 4).

In addition, our observations in the context of the steering task
reveal a noteworthy pattern: once the frame rate exceeds 90 fps, no
significant difference in performance metrics is demonstrated. This
trend is in line with earlier studies proposing the notion of a threshold
frame rate beyond which further improvements in user behavior are
not discernible [55, 56]. Participants also reported similar subjective
feelings in the interview. They could readily perceive the difference
between low and high frame rates, but when the frame rate reached a
certain threshold, they encountered difficulty in clearly distinguishing
the difference between frame rates (see Sec. 4.6.4).

Moreover, it is important to note that while prior research has demon-
strated the persistence of the phenomenon wherein higher frame rates
continue to yield improved user performance even beyond 90 fps, these
observations predominantly stem from the fast-paced scenario of shoot-
ing or action-oriented games [16, 18, 55]. Such contexts demand swift
reactions within confined temporal intervals. The distinctive feature
of our steering task lies in its lack of requirement for participants to
execute rapid responses within abbreviated time frames. Instead, we
emphasize a more naturalistic task engagement, wherein participants
complete each trial without haste. In essence, within this non-fast-
response task, a frame rate of 90 fps seems to be a discernible threshold,
after which a further increase in frame rates may not provide additional
significant improvements in participant behavior. In summary, tasks
like the steering law, which do not require quick reactions compared to
fast-paced gaming tasks, have a lower frame rate threshold to meet the
demand [55].

Visual latency is one possible cause of the differences in the effects
of frame rates on movement time (30–90 fps vs. 90–180 fps). We con-
trolled the visual latency from the device and program (see Sec. 4.2.1)

in our user study, leaving the frame rate the only source of visual latency.
Prior work has shown that visual latency generated by different frame
rates would result in different user perceptions of the moving target,
thereby significantly impacting user performance in VEs [50,52,56]. In
this work, when participants can perceive disparities in varying frame
rates (lower than 90 fps), they might prefer to subjectively adapt their
steering strategies to ‘hedge’ the visual lag caused by the low frame
rate—they might slow down to align their control with the perceived
velocity of the target. When participants cannot discern variations,
particularly at frame rates exceeding 90 fps, they have similar behavior
patterns in the steering task.

4.7.2 Answers to RQ2: the Effects of Path Features on Steering
Performance

Within the factor R, our findings were consistent with previous research.
A more curved path (a smaller R) leads to heightened task complexity,
thereby prolonging movement time and lowering average movement
speed [42, 66]. Regarding success rate, although no statistically sig-
nificant difference was demonstrated, the condition with an R of 150
mm, representing the most curved path, exhibited the lowest success
rate. Additionally, an R of 100000 mm, indicative of a nearly linear
path, had a lower success rate compared to the 250 mm radius. One
possible reason is that participants were more careful and spent greater
cognitive effort when steering mildly curved paths.

Our investigation’s results related to A and W substantiate prior ob-
servations [4, 62]. Specifically, the empirical outcomes affirm that nar-
rower and shorter paths are concomitant with decreased movement time,
improved success rate, and higher average movement speed. While A
does not demonstrate statistically significant main effects on success
rate and average movement speed, its observed trend remains consis-
tently linear, the same as the expected impact of length on steering task
performance.

5 MODELING AND FITTING

In this section, our goals were fourfold: (1) verifying the applicability
of steering law in immersive VR scenarios; (2) using a mathematical
approach to summarize and generalize the effects of frame rates accord-
ing to the results we got from the user study; (3) refining the original
steering law model to improve the predictive accuracy of movement
time (MT ); (4) evaluating whether our two models have improved the
predictive capability compared to current state-of-the-art models.

5.1 Verifying Steering Law’s Applicability in Immersive VR
Scenarios

We first checked the applicability of the original steering law [3] in im-
mersive VR scenarios. Specifically, this validation involved assessing
the prediction accuracy of MT across different path width and length
pairs. The results were regressed between collected participants’ per-
formance MT and model prediction outcomes. Given that the original
steering law model did not account for the effect of F and R on users’
performance, we conducted separate analyses for each combination
of F and R, with a total of 24 combinations (8F × 3R). Within each
F ×R combination, there were 6 IDs (3A×2W ). Finally, the original
steering law shows excellent fits, as evidenced by the coefficient of
determination r2 for each F ×R combination (M = 0.969, SD = 0.07).

5.2 Formulating the Effect of Frame Rate
We have empirically confirmed the effect of F on MT in the user study.
In this section, we further examine the influence of F on MT through
a quantitative modeling approach. To this end, we introduce the term
Fe f f ect to represent the impact of F .

Our statistical analysis demonstrates a main effect of F on MT
(see Sec. 4.6.1). Therefore, we conducted regression analyses to fit
the intricate relationship between F and MT at different conditions
of F . Based on the results, MT initially decreases when F increases
and stabilizes at a certain range when F reaches a specific threshold
(see Sec. 4.7.1 & Sec. 8). Based on this trend, we explored four com-
monly used regression models: power, exponential, logarithmic, and
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Fig. 6: Power regression of frame rate F on movement time MT (N = 8)
(LEFT). Liner regression of 1/R on movement time MT (N = 3) (RIGHT).

second-order polynomial regression models. We calculated the coef-
ficient of determination (r2) to evaluate the fitted performance of the
regression functions with respect to the results. The results revealed that
the second-order polynomial function (r2 = 0.9899) exhibited the best
fit, followed by the power function (r2 = 0.9387), logarithmic function
(r2 = 0.9158), and exponential function (r2 = 0.7877). Despite the
second-order polynomial function demonstrating the best performance,
it involves more coefficients than others. It would lead to a complex
model carrying the risk of overfitting, especially formulating the model
with path features later on. On the other hand, the exponential function
displayed the poorest fitting performance, suggesting an underfitting
issue. A similar fitting performance was observed between the power
function and logarithmic function. However, it is noteworthy that the
overall trend of the logarithmic function does not align with our find-
ings because MT turns negative when F exceeds a certain threshold,
which could not happen. Thus, the power regression was finally chosen
and conducted as shown in Fig. 6. LEFT. In the following sections, we
denote this expression as F independent

e f f ect . The effect of F on MT can be
formulated in Eq. (5).

F independent
e f f ect = MT = a(F)b (5)

Where a and b are empirical values from the regression. a is the
coefficient and b is the exponent of the base F . The corresponding
fitted values in our context are a = 5429.4 and b =−0.26. Thus, with
the values of a and b in the equation, the trend we observed in the user
study can be well formulated, i.e., the larger F is, the smaller MT is.

RM-ANOVA also revealed a main interaction effect of F×R and F×
W on movement time. Like previous work [66], we incorporated the
effects of F ×R and F ×W into the F independent

e f f ect to represent the whole
effect caused by F . Thus, the expression can be termed as F interaction

e f f ect .
Moreover, considering the strong relationship on steering tasks between
MT and 1

R that has been proven in both previous works [39, 66] and
our results (see Figure 6. RIGHT), we replaced R by 1

R in the model as
follows:

F interaction
e f f ect = MT = F independent

e f f ect (1+
1
R
+W ) (6)

5.3 Models Formulation

From the Fe f f ect results, we continue to refine the steering law and
enhance the steering law’s predictive and explanatory capabilities re-
garding MT in different conditions. In previous studies, no refined
models included the effect of F in steering law. However, we found
prior work has taken both effects of A, W , and R into account (refer to
our discussion in Sec. 2.1). In light of this, we formulated and refined
the model based on the most promising one (i.e., Eq. (4)) [66].

Based on the state-of-the-art model, further refinements were con-
ducted to incorporate the F related effects. Following this prior re-
search’s approach, the factors that impact MT were added to the denom-
inator of the original steering law [66]. Thus, we integrated F independent

e f f ect
into Eq. (4), resulting in the expression of Candidate Model 1:

MT = a+b
A

W + c 1
R +dW 1

R +F independent
e f f ect

= a+b
A

W + c 1
R +dW 1

R + e(F) f

(7)

Where values of a− f represent empirical coefficients.
Using the same approach, we can also integrate F interaction

e f f ect
with Eq. (4) to derive Candidate Model 2:

MT = a+b
A

W + c 1
R +dW 1

R +F interaction
e f f ect

= a+b
A

W + c 1
R +dW 1

R +FRindependent
e f f ect (1+ 1

R +W )

= a+b
A

W + c 1
R +dW 1

R + e(F) f + e 1
R (F) f + eW (F) f

(8)

Where a− f are empirical coefficients derived from regression eval-
uation.

5.4 Models Evaluation
5.4.1 Model Fitting Methods
In the process of fitting our nonlinear model, a nonlinear least squares
optimization was conducted for estimating the parameters of the
model [22]. Unlike linear models, the selection of initial values for
the parameters plays a crucial role in navigating the parameter space
effectively and finding the most accurate and reliable model fit. Given
the model’s complexity and the potential for multiple local minima,
we adopted a randomized approach for the initial value selection. For
each parameter, a wide range of potential values was defined (between
-10 and 10), from which initial values were randomly generated. This
process was iterated 1000 times, with each iteration involving a new
set of random initial values for the model fitting. The effectiveness of
each set of initial values was assessed based on the resulting R-squared
value of the model fit, with the highest R-squared value indicating the
most optimal fit. This iterative and randomized approach significantly
enhanced the likelihood of identifying reliable and accurate parameter
estimates for our model, albeit at the cost of increased computational
effort.

5.4.2 Comparison Metrics
For completeness, the coefficient of determination (r2) and the Akaike
information criterion (AIC) were calculated to help us better understand
and evaluate the models’ performance. Here, r2 signifies the predictive
accuracy between predicted and observed MT (ranging from 0 to 1; the
higher, the higher better). AIC is a quantitative measure used for model
selection. It compares and evaluates different statistical models based
on their goodness of fit and complexity [8]. Specifically, AIC aims to
select the model that best represents the underlying relationship in the
data while avoiding over-fitting, so it quantifies the trade-off between
a model’s fit to the data and the number of parameters it uses. AIC is
calculated as AIC =−2∗ log− likelihood+2∗numbero f parameters,
where log − likelihood represents the maximized value of the log-
likelihood function for the given model and dataset. The lower the AIC,
the better the fitness of the candidate model.

5.4.3 Baseline Models
As demonstrated in Sec. 5.1, the applicability of the steering law with
its transferability from 2D scenarios to immersive VEs is evident. Thus,
we chose four of the most common and promising 2D-based steering
models as our baseline (denoted as BL#): (BL1) the initial steering law
model proposed by Accot and Zhai [3], (BL2) a refined version of the
steering law model proposed by Nancel and Lank [42], which integrates
the effect of curvature radius based on kinematics, and (BL3) and (BL4)
are the refined models proposed by Yamanaka and Miyashita [66],
which also consider the effects of curvature in the steering task, and
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Fig. 7: Movement time (MT ) model fitting across all conditions (N = 90)
using the models from prior work [3,42,66].

Table 1: Models fitting results for predicting MT , including r2 (where
higher values indicate better fit) and AIC (where lower values indicate
better performance) for models. r2 and AIC in bold are the best values
among them.

Source Model r2 AIC

BL1 [3] a+b W
A 0.234 1815.72

BL2 [42] a+b A
WR1/3 0.618 1715.28

BL3 [66] a+b A
W+c 1

R
0.568 1733.14

BL4 [66] a+b A
W+c 1

R +dW 1
R

0.781 1639.32

CM1 Candidate Model 1 a+b A
W+c 1

R +dW 1
R +F independent

e f f ect
0.961 1386.46

CM2 Candidate Model 2 a+b A
W+c 1

R +dW 1
R +F interaction

e f f ect
0.957 1397.84

(BL4) has the best performance in their work. These models are listed
in Tab. 1 accordingly.

5.4.4 Result of Evaluation

We conducted nonlinear regression to fit the coefficients of each model
and calculated the values of r2 and AIC for comparison (values for
coefficients in each model are listed in Tab. 3). Our results reveal
that Candidate Model 1 (CM1) exhibits the best fitness (r2 = 0.961,
see Fig. 8. LEFT), closely followed by Candidate Model 2 (CM2,
r2 = 0.957, see Fig. 8. RIGHT). The third and fourth positions are
held by Yamanaka and Miyashita’s model with curvature-radius and
width interactions (BL4, r2 = 0.781) and Nancel and Lank’s kinematic-
based model (BL2, r2 = 0.618), respectively (summarized in Fig. 7.
RIGHT & MIDDLE-LEFT). Yamanaka and Miyashita’s model, which
did not consider the interaction effect, obtains an r2 of 0.568 (BL3,
see Fig. 7. MIDDLE-RIGHT). The result of the original steering
law model received the lowest r2 of 0.234 (BL1, see Fig. 7. LEFT).
Regarding AIC, our candidate model CM1 demonstrates the optimal
performance with a value of 1386.46, followed by CM2 (1397.84), BL4
(1639.32), BL2 (1715.28), BL3 (1733.14), and BL1 (1815.72).

Fig. 8: Movement time (MT ) model fitting across all conditions (N = 90)
using the two proposed models.

5.5 Discussion

5.5.1 Answers to RQ3: Steering Law in Immersive VEs

Given that no prior work has verified the feasibility of the original
steering law in immersive VR environments, we conducted empirical
analyses to confirm the suitability before refining the original model.
Since the model did not consider the factors of F and R, we analyzed
each F ×R combination independently to mitigate their effects. The
fitness (r2) for each pair on MT exhibited a high degree of performance
(M = 0.969, SD = 0.07). This result strongly proves the applicabil-
ity and extendability of the original steering law in immersive VR
environments.

5.5.2 Answers to RQ4: Modeling Users’ Behavior in Steering
Tasks

We observed a main effect of F and an interaction effect of F ×R. The
exponential regression was conducted to depict the general trend of MT
at different F conditions. For the interaction effect, F , R, and W were
formulated through multiplication. We termed these two expressions
as F independent

e f f ect and F interaction
e f f ect , as shown in Eq. (5) & Eq. (6). Then,

the two Fe f f ect were integrated in the current most promising model
(see Eq. (7) & Eq. (8)). We demonstrated the proposed models’ pre-
dictive accuracy compared to four baseline models. Both r2 and AIC
showed our models have the best predictive accuracy and performance.

Regarding the models we proposed, an interesting result is that the
performance of the two proposed models is close to each other. Specif-
ically, CM1 obtained the lowest AIC score (∆ = −11.38, compared
to CM2) and the highest r2 (∆ = 0.004, compared to CM2). This re-
sult could be attributed to two potential factors: (1) While the CM2
encompasses additional independent variables that may seem more ex-
planatory, such as R and W , it may also introduce more noise, thereby
diminishing the overall predictive power of the model. (2) There is a
possibility that the optimal value was still not reached, although the
initial values were chosen randomly. Nevertheless, it is important to
note that this situation does not significantly impact our final results.
Both models exhibit comparable performance, offering a superior ex-
planation of user behavior compared to all the established baselines.
Even with a modest improvement of 17.6%, our models underscore
their effectiveness in capturing the intricacies of user behavior within
different frame rates. Furthermore, CM1 and CM2 have the same
number of coefficients, differing by only two more coefficients when
compared to the baselines, which did not take the effect F into account.
The 6 coefficients in our current model account for the more complex
scenario when the path is curved, allowing us to represent different task
difficulties. However, if we restrict our consideration to cases where
the path is straight, as in previous work, we only have four coefficients
written as MT = a+ b A

W+c(F)d . The number of coefficients equals
the previously enhanced steering law model [62, 66]. Moreover, the
values of coefficients, e and f , after being regressed from our models,
accurately describe and present the trend we observed in the user study,
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Fig. 9: A screenshot of the application scenario. The white semi-
transparent tunnel is the path to be traced by the participants. The
white sphere on the controller serves as the cursor (i.e., the brush nib),
while the pink line represents the line drawn by the participant.

where a larger F leads to a smaller MT (see Tab. 3).
In summary, we consider that the performance of our two proposed

models is best; both models maintain simplicity, and all the coefficients
are interpretable, avoiding the risk of overfitting. Moreover, the two
models demonstrated strong applicability across various difficult tasks
that are represented by R within our experimental settings. Therefore,
these results imply that for accurately establishing steering law across
various conditions (A×W ×R×F), it necessarily needs to consider
the factors F .

6 EXAMPLE APPLICATION

We aimed to investigate the applicability and generalizability of our
proposed models further. To achieve this, we selected a tracing task—to
simulate authentic VR-based painting activities, where users typically
utilize a controller as a brush to draw their intended or pre-designed
patterns within VEs [11]. We conducted a second user study to collect
user steering performance in this tracing task under different conditions
and introduced a new application scenario. Using the collected behavior
data, we first applied the proposed models and the model from prior
work to predict both movement time (MT ) and average movement
speed (V ), and then compared the discrepancies between the predicted
and observed values.

6.1 Participants, Apparatus, and Task
Fifteen participants were recruited in this study (8 females and 7 males,
aged between 19 and 25, M = 21.9, SD = 2.53). None of them par-
ticipated in the first study. Six participants had prior experience with
VR HMDs. All of them reported they were able to see all the virtual
objects in the headset.

In this study, we used a Meta Quest 3 VR headset. This device
features a 2064×2208 per eye resolution screen, a maximum refresh
rate of 120Hz, and a FoV of 110 degrees horizontally and 96 degrees
vertically. The experimental program was developed using the Unity3D
game engine with C# and integrated with the Oculus Interaction SDK
(version 57.0.2). This program was developed and run on a computer
with the same configurations as in the first study.

In our study, we developed a tracing task using a predefined semi-
translucent tunnel as the path for participants to follow. This tunnel
was configured with three conditions: width, length, and curvature.
Within each trial, participants needed to hold the controller with a small
sphere affixed to the top, which served as the cursor to indicate where
the line would be rendered. Once ready for a trial, they pressed and
held the trigger button and navigated the cursor through the tunnel to
draw a replicated pattern. The steering duration was measured from
the moment the sphere entered the tunnel until it exited. Notably, only
successful trials were recorded. If the cursor sphere crossed the tunnel
boundary, participants were required to restart the trial.

Table 2: Models fitting results for predicting MT and V , including r2

(where higher values indicate better fit) and AIC (where lower values
indicate better performance) for models. r2 and AIC in bold are the best
across models.

MT V
Source r2 AIC r2 AIC

Baseline 0.813 624.5 0.739 -342.6
modelindependent 0.935 565.2 0.857 -370.82
modelinteraction 0.927 571.9 0.854 -370.1

6.2 Design and Procedure
A within-subjects design was used in this study with four within-
subjects factors, including 3 frame rates F (30 fps, 75 fps, and 90
fps), 3 path lengths A, 2 path widths W , and 3 curvature radii R. To
increase comparability, we kept the conditions in A, W , and R with the
same values as in the first user study. As in our proposed models, only
the effects of F were integrated into the outperformed model from prior
work that has included the effects of A, W , and R [66]. Therefore, the
variations of A, W , and R would not affect our models’ performance.

Regarding the values of F , we initially aimed to simulate user behav-
ior at the most commonly used or default frame rates in VR headsets
(see Figure 1). To provide a comprehensive analysis, we also consid-
ered users’ performance under low frame rate conditions, which are
frequently encountered in real applications, as discussed in Section 2.3.
Given that the maximum refresh rate of Meta Quest 3 is 120 Hz, we
selected three frame rates for this study: 90 fps (commonly used), 75
fps (intermediate), and 30 fps (low frame rate).

The experimental procedure and the order of the within-subjects
factor conditions were the same as in the first user study, as described
in Section 4. The whole duration of the experiment was approximately
15 minutes for each participant. In total, we collected 3F ×3A×2W ×
3R× 5 repetitions × 15 participants = 4050 data trials in this study.

6.3 Predicting Average Movement Time
We pre-processed the data in the same way as in the first study. In total,
we removed 72 trials, which accounts for 1.77% of the total number of
trials.

To demonstrate the capabilities of our models, we used the current
most promising model, the same as the baseline in the first user study
(see Eq. (4)). For simplicity, We rename the Candidate Models 1 and 2
as modelindependent and modelinteraction, respectively, according to their
attributes in terms of the Fe f f ect . Tab. 2 summarizes the results. The
baseline model showed the worst performance across all metrics. The
results revealed that the modelindependent was still the best predictive
performance across all conditions. This outcome is consistent with our
conclusion in Sec. 5.4.

6.4 Predicting Average Movement Speed
Based on previous work, the average time equals the moving distance
divided by the average velocity. We present our denominator sepa-
rately for predicting the average movement speed V [26, 39, 66]. The
modelindependent and modelinteraction can be expressed as:

V = a+bW + c
1
R
+dW

1
R
+F independent

e f f ect (9)

V = a+bW + c
1
R
+dW

1
R
+F interaction

e f f ect (10)

The baseline model can be expressed as:

V = a+bW + c
1
R
+dW

1
R

(11)

We used these models to predict the V we obtained from the ex-
periment to examine our models further. Same as in the prediction
of movement time, Modelindependent has the highest predictive accu-
racy, then the second highest prediction rate is modelinteraction, and the
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worst is the baseline. Finally, AIC results show that modelindependent
performs optimally with our studies.

7 SUMMARY OF FINDINGS AND RECOMMENDATIONS

In this section, we briefly summarize the main findings of this work,
accompanied by pertinent recommendations.

In the user study (Sec. 4), the dataset encompassing various con-
ditions (A, W , R, and F) was collected and evaluated in terms of
movement time, success rate, and average movement speed. Our results
discovered the impact of F on user behavior and performance, unveiling
the direct effect of F on user performance. Furthermore, we identified
a threshold at 90 fps, beyond which frame rates did not significantly
improve performance in a non-fast-response task. Moreover, our study
confirmed the consistency of observed trends in path characteristics (A,
W , and R) with prior research and validated the possibility of applying
and modeling steering law to immersive VR scenarios.

Based on the results from the user study, we verified the applica-
bility of steering law in immersive VR environments, which shows
strong fits (M = 0.969, SD = 0.07). Two models (see CM1 and CM2
in Sec. 5) were then built by formulating the effects of frame rate and
integrating them into the current most promising model. We found the
proposed models achieved high prediction accuracy for predicting MT
(r2 exceeds 0.957 for both models). The prediction accuracy shows
improvements of at least 17.6% compared to past models. Moreover,
they have exhibited a remarkable 72.7% enhancement in r2 and a no-
table 23.6% improvement in AIC compared to the original steering law
model.

Furthermore, we demonstrated the usefulness of the proposed mod-
els in Sec. 6. We applied the proposed models to predict movement
time and average movement speed. To verify their robustness and re-
producibility, we conducted a follow-up user study with a tracing task
using the three most typical frame rates to collect user performance.
The two proposed models show the best predictive accuracy on both
movement time and average movement speed (see Tab. 2).

Finally, we prove that in immersive VR, the frame rate can directly
affect human behavior and performance, even for tasks where users
do not need to react within a short period of time. Thus, combined
with previous VR-based gaming tasks [55], it is possible to conclude
that frame rate would affect participant behavior regardless of whether
its task demands the user to respond within a limited period of time
or not. Moreover, we found that increasing the frame rate does not
significantly affect the user’s behavior further after reaching a certain
threshold (90 fps in our case and 120 fps in the gaming-based task).
Therefore, based on our findings, we make two recommendations: (1)
while different tasks have varying thresholds for frame rate, for better
standardization, 90 fps would be optimized to use as the minimum
lower frame rate threshold with non-fast-response tasks and 120 fps
serves as the minimum frame threshold for fast-response tasks when
the device is available [55]. (2) To enhance reproducibility in future VR
research, researchers should explicitly report the frame rates and device
refresh rates employed in human-computer interaction experiments
when detailing study specifics.

8 LIMITATIONS AND FUTURE WORK

According to our current work, four main limitations were identified
and represent possible avenues for future research.

First, we found that user behavior was not significantly affected by
high frame rates (from 90 fps to 180 fps). However, considering the
limitation of the maximum refresh rate of current devices, we cannot
evaluate effects with frame rates higher than 180 fps in VR headsets.
In addition, since we employed the exponential regression to construct
the Fe f f ect , we recommend applying our models for predicting MT
and V within the range of 30-180 fps when using it. However, it is
worth noting that the frame rate intervals chosen in our studies already
encompass all the current common frame rates in today’s VR headsets.
In the future, as devices with higher refresh rates become accessible,
it is essential to investigate and verify whether user behavior remains
unaffected at these elevated refresh rates.

Second, our experimental design only asked participants to steer in
one direction—from left to right. Though it is a standard approach
applied in prior studies either in 2D contexts [3, 62, 64–66] or 3D
environments [35], we believe it may also be worthwhile to investigate
the effect of steering direction in the future, given that users have more
freedom in interacting with immersive VR environments.

Third, we demonstrated the effectiveness of frame rate across vary-
ing path lengths and widths in our studies. However, we used 8 frame
rates as our within-subject conditions, which resulted in numerous repet-
itive steering times and extended experimental duration. To mitigate
potential participant impatience and disengagement [68], we limited
our investigations to 3 path widths and 2 path lengths. Therefore, we
intend to explore more complex scenarios in the future by examining
additional path features and verifying our results and models in more
application scenes.

Finally, our research employed the steering law, a standard non-
fast-response task, to evaluate user behavioral patterns across varying
frame rates. While our findings indicate no significant variance in user
behavioral performance once the frame rate surpasses a certain thresh-
old (90 fps), it is important to acknowledge potential discrepancies
across diverse tasks. For instance, more intricate interaction scenar-
ios and tasks might yield different threshold outcomes compared to
those identified in our study. Therefore, in the future, we intend to sys-
tematically analyze the thresholds under various interaction scenarios
and explore potential patterns between these thresholds and interaction
characteristics.

9 CONCLUSION

In this work, we investigated the effects of frame rate and path con-
figurations (length, width, and radius of curvature) on steering task
performance in virtual reality (VR) head-mounted displays (HMDs)
through a user study. Based on the results, we proposed two models for
predicting steering movement time and average movement speed. Our
work shows that our models, which consider the effects of VR HMDs’
frame rate, achieved better prediction performance than the existing
models. To further evaluate the robustness of the proposed models,
we applied them in a tracing task to predict the users’ performance
and compared the prediction results with user behavior data collected.
The results of this evaluation show that the two models can achieve
high prediction performance. Our findings can help understand and
predict steering actions, such as navigating through menus or drawing
lines, thereby supporting decision-making in interaction design for VR
HMDs. Furthermore, our results bridge the gap between the effects
of frame rate on user behavior in non-fast-response tasks and confirm
the necessity of reporting device refresh rates and frame rates in future
human-computer interaction experiments using VR HMDs.
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Table 3: Detailed values of coefficients derived from nonlinear regression for each model with 95% CIs [lower, upper].

a b c d e f

BL1 906.93 113.50
[636.23. 1177.87] [79.43, 147.57]

BL2 1098.61 646.76
[991.988, 1205.35] [562.52, 730.99]

BL3 1073.21 57.81 -2572.24
[865.97, 1280.35] [32.34, 83.29] [-3071.85, -2072.29]

BL4 576.73 100.71 1198.77 -82.12
[354.45, 739.02] [77.84, 123.57] [793.13, 1604.45] [-87.98, -76.32]

CM1 4.57 331.45 -945.30 -68.16 10.55 0.34
[-157.46, 166.60] [241.83, 421.07] [-1871.61, -18.99] [-75.25, -61.07] [3.10, 18.00] [0.26, 0.42]

CM2 485.72 173.33 1821.21 -121.75 0.06 0.47
[396.85, 574.52] [109.31, 237.32] [1156.33, 2486.09] [-162.74, -80.75] [-0.09, 0.23] [0.13, 0.8]
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