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Figure 1: LEFT: a user is selecting a target with eyes in an AR headset. A head endpoint and an eye endpoint are recorded after
each selection. RIGHT: Multiple repetitive selections form a head endpoint distribution and an eye endpoint distribution. The
distributions are used by our models to predict the likelihood of selecting each object. The object with the highest selection
probability will be chosen as the predicted target.

ABSTRACT
Target selection is a fundamental task in interactive Augmented
Reality (AR) systems. Predicting the intended target of selection
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in such systems can provide users with a smooth, low-friction in-
teraction experience. Our work aims to predict gaze-based target
selection in AR headsets with eye and head endpoint distributions,
which describe the probability distribution of eye and head 3D ori-
entation when a user triggers a selection input. We first conducted
a user study to collect users’ eye and head behavior in a gaze-based
pointing selection task with two confirmation mechanisms (air
tap and blinking). Based on the study results, we then built two
models: a unimodal model using only eye endpoints and a multi-
modal model using both eye and head endpoints. Results from a
second user study showed that the pointing accuracy is improved
by approximately 32% after integrating our models into gaze-based
selection techniques.
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1 INTRODUCTION
Target selection is one of the most common and fundamental tasks
in Augmented Reality (AR) systems. Modern AR Head-Mounted
Displays (HMDs), such asMagic Leap andHoloLens 2, allow users to
select virtual objects via handheld controllers or mid-air gestures.
However, there are situations where users cannot interact with
AR HMDs using controllers or gestures because one or both of
their hands are preoccupied with other tasks, such as carrying
tools or other items. Such cases would become common as AR
HMDs gradually become more incorporated into people’s daily
lives in the same way as personal computers or mobile phones in
the foreseeable future. With eye-tracking capabilities increasingly
integrated into AR HMDs, gaze-based input can help solve this
dilemma as a complement to the hand-based selection approaches.
Eye gaze is generally fast as it could scan a wide range of areas
with little physical effort [9, 64]. It is also lightweight and often
indicates selection intention [16]. However, gaze-based selection
can often be inaccurate due to the noisy patterns of gaze points and
limitations in today’s tracking devices.

There have been extensive discussions about strategies to im-
prove the accuracy of eye-based selection, such as expanding the
target size [48], adding supportive visual cues [40], and integrat-
ing multi-stage refinements [35]. However, due to frequent visual
changes, target expansion or visual cue strategies inevitably sac-
rifice the consistency of a user interface and lower users’ immer-
sion [68]. On the other hand, a multi-stage technique may introduce
extra complexity to the selection procedure. We deem that a user
behavior modeling approach can potentially avoid these shortcom-
ings. It helps understand a user’s target selection process and their
behavioral pattern, and ultimately, supports target selection pro-
cesses with probabilistic-based model predictions [6, 25, 38, 63, 67].
This could implicitly improve the target selection accuracy that
does not involve visual changes or additional interaction steps,
which eventually saves users’ efforts in a target selection task and
make the process more usable and efficient.

Several models based on movement dynamics and selection end-
points have been explored for predicting the intended target of selec-
tion [6, 24, 63]. More relevant to our work are endpoint-based mod-
els that describe the probability distribution of a selection pointer
when a user triggers a selection input (i.e., the likelihood of the user

selecting a target with specific cursor positions/orientations). How-
ever, prior work has mainly focused on endpoints-based models
for one-dimensional (1D) or two-dimensional (2D) target selection
tasks (e.g., [5, 26, 33, 39]). While in immersive three-dimensional
(3D) virtual environments, the endpoints-based models are mainly
about hand-/head-based selections [15, 63]. To the best of our knowl-
edge, limited research has explored an endpoints-based model for
gaze-based target selection tasks in AR. Due to the promises and
uniqueness of gaze as an input modality, it is essential to under-
stand how interface features (e.g., object size and distance) and
input mechanisms (e.g., eye blinking and air tap) can influence
users’ gaze selection endpoints and to further provide prediction
assistance in AR systems.

To fill this gap, we present two models for gaze-based target
selection. One considers only the eye endpoint when a user triggers
a selection, i.e., the endpoint distribution is with eyes-only (see Fig-
ure 1, the blue scattered points). The other model adds the head end-
point to provide additional information in addition to the eye-only
model, which further explains how a user’s head and eyes collabo-
rate during the selection process (see Figure 1, the multimodal uses
both eye and head endpoints). To do this, we first conducted a user
study to investigate how factors including target width, distance,
and selection confirmation mechanisms could influence endpoint
distributions and collect data for our models. We then conducted
another user study to compare our target prediction models with
a baseline. We show that the pointing accuracy can be improved
approximately by 32% after integrating our models into gaze-based
selection techniques. We also find that our unimodal model offers
slightly better performance than the multimodal model.

The primary contributions of this paper include:

• Two endpoint distribution models for predicting gaze-based
target selection: a unimodal model with eye endpoints only
and a multimodal model with both eye and head endpoints.

• Results and interpretations of the behavioral characteristics
of the eye and head during gaze-based target selection. We
recorded participants’ behavioral data in our studies (such
as selection time, trajectories, head direction, and endpoints
coordinates). We have also evaluated the influence of various
factors on the outcomes (such as target width, movement
amplitude, and confirmation mechanism).

• Open-sourced gaze-based selection dataset collected from
our two user studies which contain 20160 data trials.

2 RELATEDWORK
2.1 Gaze Behavior and Eye-Head Coordination
Gaze behavior is a well-studied and trending research domain.
Prior work has leveraged eye-gaze as a single input modality in
conventional interactive systems, such as desktops, phones, and
tablets [2, 30, 39]. In these studies, researchers have investigated
how users’ eyes could be used to select targets on 2D screens with
limited sizes at certain distances. More recently, researchers have
considered the role of the head during gaze-based interaction, espe-
cially in HMDs, which are attached close to users’ eyes. Different
from conventional 2D interfaces, when interacting with HMDs,
users “carry" the displays when searching and selecting the target.

https://doi.org/10.1145/3544548.3581042
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This search and selection process often involves coordination be-
tween the eyes and head [51, 52]. For example, previous research
has utilized head movement to support gaze-based selection [52]
or to predict probable gaze positions [11]. Therefore, the role of the
head becomes vital to understand users’ gaze behavior while using
HMDs.

The existing literature provides some understanding of how
users’ eyes and head coordinate with each other to achieve a com-
fortable viewing experience. The visual field of the human eyes is
usually around 210° horizontally and 120° vertically [51]. When an
eye movement is greater than 30° from the center of the sight, peo-
ple tend to move their head together with eye movements [36]. For
short-distance eye movements that are smaller than 30°, the head
typically contributes one-third of the whole amplitude, and the
percentage of head movements in the whole amplitude increases
as the distance gets longer [50]. When people intend to look at a
target, they typically move their eyes towards the target position,
followed by head movements in about the same direction [7]. When
the remaining amplitude is comfortable enough for eye movements,
the head movement may stop its assistance [21]. Such ‘assistance’
behavior varies from person to person, where some people tend
to move their heads to keep their eyes in a narrower and more
comfortable range while some others do not [51]. This difference
in eye-head coordination can have a significant effect on the use of
HMDs, which typically requires head-supported gaze movements
to search and select the target, especially for those targets located
outside a user’s field-of-view (FoV).

Prior work has identified that when the head is not disturbed by
extra factors, the amplitude of saccadic eye movements (i.e., rapids
movement of the eye between fixation points) can be expressed as a
function of the head’s speed [23]. However, it is unknown whether
the HMD’s weight would affect the head movement speed, and
thus affect eyes and/or head movements. While previous work has
discussed head-eye collaboration in immersive VR HMDs [51, 52],
it is still unclear whether the position and depth of the holographic
projections generated in realistic scenes in AR devices will have an
impact on users’ eye and head movements.

2.2 Gaze-Based Selection
With the upgrade of eye-tracking technology and the increasing
demand for using implicit eye data as an additional modality, a
growing number of studies have focused on gaze-based selection.
Gaze-based selection has been applied to various scenarios, includ-
ing but not limited to gaming [18, 53], object manipulation [55, 64],
text input [20, 43, 44], and text selection [41, 47]. In gaze-based
selection, users are able to locate the target using their eyes in a
fast and natural way but may suffer from low accuracy. Consider-
able attention has been devoted to improving gaze-based selection
accuracy. One aspect is to design and enhance the confirmation
mechanism to make it stable and efficient [19, 32, 49]. Similar to
other pointing-based selection, gaze-based selection is normally
a two-step procedure. In the first step, a user’s eyes work as an
indicator to search, navigate to, and locate the target. While in the
second confirmation step, the user needs to trigger the selection,
either using the eyes or an additional modality [51, 52].

In addition to the eyes, gaze-based selection is often combined
with other parts of people’s bodies, such as the head [60], hand
gestures [17, 62], handheld devices [35], or body movements [32].
For example, Klamka et al. [32] incorporated gaze with foot strokes
so that when the user needs to zoom in on a 2D picture or map, in-
stead of dragging the mouse to select the target, the area where the
eye is currently looking at is the zoom center and the foot strokes
are the triggers. In a multi-modal method, the eye is often used for
controlling the cursor to locate the target, while a second modality
is adopted for confirmation. Given the difficulty of controlling eye
movements precisely, many prior studies have used eyes as a coarse
localizer and performed fine-tuning of the selection via other inter-
action methods to improve the selection accuracy [12, 35, 60]. This
approach is effective in improving selection accuracy, but it also
lowers the naturalness and intuitiveness of the selection procedure
with higher learning efforts and interrupted experience.

When considering using only the eyes to perform a gaze-based
selection, dwell is a common and usable confirmation mechanism.
After aiming at the target, a user can stay or hold the gaze at the
target for a certain amount of time to confirm the selection (i.e., a
dwell time). The efficiency of using dwell to select targets mainly
depends on the dwell criterion [29, 39]. It is usually restricted to spe-
cific tasks, such as text selection or selecting static targets in sparse
environments. First, due to their nature, people’s eyes constantly
have motions when gazing at a target, which results in tremors,
drifts, and microsaccades [18]. This means the eyes cannot maintain
a steady gaze for a long period [18]. In complex scenarios when
objects are small, moving, or occluded by each other, selecting the
target becomes more complicated and possibly causes serious eye
fatigue [4, 59]. Blinking is another typical confirmation mechanism
in gaze-based selection [43]. It can be classified as spontaneous
(short) and voluntary (long) blinking, where a spontaneous blink-
ing typically lasts around 100 milliseconds, but a voluntary blinking
may last over 200 milliseconds [34]. A camera and an algorithm are
needed to determine an intended blink for selecting a target [13].
When AR HMDs do not have built-in eye-tracking camera(s), an
external USB eye-tracking camera is normally required to utilize
blink behavior for interaction (e.g., the setup of HoloLens head-
set with Pupil Lab’s eye tracker [35]). It should be noted that the
selection using dwell or multi-modal methods is usually continu-
ous, whereas blinking creates an interruption to the process. For
a blinking action, a user would close the eyes and this ceases the
indication of the gaze point in the selection process. It is unknown
whether these two types of confirmation mechanisms have a direct
effect on gaze-based pointing selection.

2.3 Modeling Target Selection
One of the most common ways to determine if a target has been
selected is the Visual Boundary Criterion (VBC), where a target
is considered to be selected only if the cursor (controlled by hand,
stylus, etc.) falls within the target’s boundary. An ongoing research
topic is designing new target selection methods to achieve selection
efficiency and accuracy using VBC. Several approaches have been
proposed, such as modifying the size of targets [3, 8, 46, 48, 65],
or using visual cues to indicate where the target is [40]. These
approaches inevitably require visual changes in the immersive
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environment and break the consistency of the interaction, which
ultimately lowers the usability and interactivity [56, 68].

One open challenge is how to improve the selection accuracy
without changing or distorting the interface and achieve a better
understanding of human behavior in the selection process. Fitts’ law
is one of the well-knownmodels for understanding human behavior
when selecting a target. Its extensive generalization allows it to
calculate the movement time (MT) in different scenarios [5, 57, 58].
Fitts’ law has also been applied to eye-based selection. For example,
Zhang [66] proposed the IDeye model, which accurately predicts
the eye’s MT and pointing time (EMT) in 2D screens. Isomoto et
al. [29] proposed a gaze model based on Fitts’ law that effectively
reduces the dwell time of acquiring a target.

Fitts’ law helps to understand human behavior in target selection;
however, improving the efficiency and accuracy of target selection
cannot be achieved only with Fitts’ law, especially in a dense en-
vironment, or the targets are moving or small. Understanding the
selection endpoints can be one potential solution to fill this gap.
Bi et al. [6] proposed an approach applying Bayesian theory for
touch screens, which treats the finger touch input as an uncertain
process and reduces the selection errors compared to a VBC ap-
proach by calculating the Bayesian Touch Distance (BTD). Bi et al.’s
later work has shown that the endpoint distribution with finger
pointing follows a bivariate Gaussian distribution and it is possi-
ble to predict selection behavior, such as selection accuracy, using
this approach [5]. These models have been generalized in several
application scenarios in 2D interfaces, including pointing-based
selection for 1D moving targets [27], 2D moving targets [28], 2D
moving targets with arbitrary shapes [67], and crossing-based se-
lection for moving targets [26]. In addition, they have been adapted
to pointing selection for static targets in 3D VR environments with
head- and hand-based approaches [63]. Zhu et al. [68] used end-
point distribution as a likelihood model in their Bayesian model. Li
et al. [38] also built the Bayesian-based pointers to select targets
with 2D movements.

Our work provides some unique contributions as compared to
prior work: (1) While prior endpoint distribution-based models
have discussed head- and hand-based interaction in 3D VEs [63],
our work extends this to gaze-based selection in AR HMD scenar-
ios. (2) Previous eye-based models considered the eye as a single
input modality [39]. However, we consider both the eye and head
and combine them to build a multi-modal model. (3) Prior eye-
based models utilized users’ eyes’ trajectories but not the endpoint
distributions. In contrast, our work focuses on the endpoint distri-
bution of gaze-based selection, which represents the probability
distribution of pointing direction when a user triggers a selection
input.

3 RESEARCH OVERVIEW
3.1 Models
In this research, we aim to build two endpoint distribution models
(a unimodal model and a multimodal model) for gaze-based target
selection in AR headsets. For the unimodal model, we consider end-
point distribution as the probability distribution of gaze-pointing
direction in 3D space when a user triggers a selection input. In this
case, the cursor orientation (i.e., the Raycasting direction) is the

same as where the eyes are looking at. For the multimodal model,
we incorporate the probability distribution of the head-pointing
direction into the existing eye-based model to provide additional
information for target prediction. We hypothesize that the end-
point distributions of both modalities (i.e., eyes and head) to be
bivariate Gaussian distribution, and different task factors including
target size and target distance could influence the parameters of
the distribution.

3.1.1 Unimodal Model. The basic idea of our unimodal model is to
automatically select the target with the highest probability based
on their gaze-pointing direction once a user triggers a selection
input. The concept is similar to previous works that leverage Bayes’
theorem for target prediction [6, 27, 63]. Supposing a list of potential
targets in the environment 𝑇1,𝑇2, ...,𝑇𝑛 , the probability of selecting
a particular target 𝑇 with a gaze-pointing direction 𝐺 is 𝑃 (𝑇 | 𝐺).
According to Bayes’ theorem (Equation 1), 𝑃 (𝑇 | 𝐺) is based on (1)
𝑃 (𝑇 ), the probability of selecting a target which is usually set to 1/𝑛;
(2) 𝑃 (𝐺), the probability of gaze pointing at the particular direction
𝐺 , which is assumed to be a constant value; and (3) 𝑃 (𝐺 | 𝑇 ),
the likelihood of selecting a particular target 𝑇 with gaze-pointing
direction 𝐺 , which can be calculated based on the eyes endpoint
distribution probability density function.

𝑃 (𝑇 | 𝐺) = 𝑃 (𝐺 | 𝑇 )𝑃 (𝑇 )
𝑃 (𝐺) (1)

Therefore, our model needs to learn the endpoint distribution
of users’ eyes when they select potential targets with different
widths and distances to derive the likelihood of selecting a particular
target given a gaze-pointing direction. The 𝑇 with the highest
probability will be recognized as the intended target𝑇 ∗ (Equation 2).
The likelihood function should be derived from an empirical user
study. To this end, our first study served as a data source to help us
quantify the distribution of endpoints. The derived parameters of
the likelihood function are described in Section 5.1.

𝑇 ∗ = argmax
𝑇

𝑃 (𝑇 | 𝐺) = argmax
𝑇

𝑃 (𝐺 | 𝑇 ) (2)

3.1.2 Multimodal Model. Our multimodal model further extends
the unimodal model by incorporating head-pointing direction to
determine the intended target of selection. In this case, the probabil-
ity of selecting a target𝑇 with a gaze pointing direction𝐺 and head
pointing direction 𝐻 can be expressed as 𝑃 (𝑇 | 𝐺,𝐻 ). Similarly,
according to Bayes’ theorem, 𝑃 (𝑇 | 𝐺,𝐻 ) can be expanded based
on Equation 3.

𝑃 (𝑇 | 𝐺,𝐻 ) = 𝑃 (𝐺,𝐻 | 𝑇 ) · 𝑃 (𝑇 )
𝑃 (𝐺,𝐻 ) (3)

We can use the conditional probability formula on 𝑃 (𝐺,𝐻 ) to
further expand the equation. Therefore, we derive Equation 4 as
follows.

𝑃 (𝑇 | 𝐺,𝐻 ) = 𝑃 (𝐺,𝐻 | 𝑇 ) · 𝑃 (𝑇 )
𝑃 (𝐻 | 𝐺) · 𝑃 (𝐺) (4)

To determine 𝑃 (𝑇 | 𝐺,𝐻 ), we need (1) 𝑃 (𝑇 ), the probability of
each object being selected (set to 1/n); (2) 𝑃 (𝐺), the probability
of gaze pointing at the direction 𝐺 (set to a constant value); (3)
𝑃 (𝐻 | 𝐺), the probability of head pointing direction 𝐻 , given that
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the gaze pointing direction 𝐺 . We treat this value as a constant
within a particular 3D space. (4) 𝑃 (𝐺,𝐻 | 𝑇 ), the probability of
gaze pointing direction 𝐺 and head pointing direction 𝐻 , for a
given target. The likelihood of gaze and head pointing direction
𝑃 (𝐺,𝐻 ) should be different for each potential target 𝑇 .

Therefore, to determine 𝑃 (𝑇 | 𝐺,𝐻 ), our primary concern is to
compute 𝑃 (𝐺,𝐻 | 𝑇 ), meaning the likelihood of gaze pointing at
𝐺 and head pointing at 𝐻 for each potential target (i.e., 𝑃 (𝐺,𝐻 )𝑇
for each 𝑇 ). We further expand the term through the condition
probability formula (Equation 5).

𝑃 (𝐺,𝐻 )𝑇 = 𝑃 (𝐻 | 𝐺)𝑇 · 𝑃 (𝐺)𝑇 (5)

Here, we thus want to determine (1) 𝑃 (𝐻 | 𝐺)𝑇 , the probabil-
ity of head pointing direction 𝐻 , give a gaze pointing direction 𝐺
for a specific target. This can be calculated based on the relative
probability distribution of the head by treating the gaze pointing
direction as the origin for selecting a target. (2) 𝑃 (𝐺)𝑇 , the prob-
ability of gaze pointing direction 𝐺 when selecting a target. Both
terms can be determined from an empirical user study where we
require users to perform gaze-based target selection on objects of
different sizes and distances. After computing these values from
the probability density functions, our multimodal prediction model
can then pick the object with the highest 𝑃 (𝐺,𝐻 )𝑇 as the intended
target 𝑇 ∗ (Equation 6). The derived parameters of the likelihood
functions are described in Section 5.2.

𝑇 ∗ = argmax
𝑇

𝑃 (𝑇 | 𝐺,𝐻 )

= argmax
𝑇

𝑃 (𝐺,𝐻 | 𝑇 )

= argmax
𝑇

𝑃 (𝐻 | 𝐺)𝑇 · 𝑃 (𝐺)𝑇
(6)

3.2 Study Outline
To build the models, we first conducted a data collection study to
explore how factors including target size and target distance can in-
fluence endpoint distributions of users’ eyes and head. Additionally,
we investigate two confirmation mechanisms (blinking and air tap)
as they could result in different endpoint distributions. The data
from the first study would allow us to fit both models for target
prediction. In a second study, we compared three gaze-based se-
lection techniques: target selection with visual boundary criterion
(baseline), target prediction with our unimodal model, and target
prediction with our multimodal model. This would allow us to
quantify the performance improvement brought by the prediction
models.

4 USER STUDY 1: DATA COLLECTION
The goal of this studywas to collect data on eyes and head endpoints
when performing gaze-based target selection in AR HMDs. With
the collected data, we were able to better understand how interface
features (object size and distance) and inputmechanisms (air tap and
blinking) may influence endpoint distributions. We could also learn
about how users’ eyes and head collaborate in a selection. Moreover,
we derived two models based on the eye and head endpoints.

Figure 2: LEFT: Experimental physical environment setup.
RIGHT: Holographic projection in the scene. Participants
selected the targets (in blue) based on the order indicated by
the arrows. The arrows are only for illustration and were not
shown to participants.

4.1 Participants and Apparatus
Twenty participants (4 females and 16 males) were recruited from a
local university. They were aged between 19 and 25 years (𝑚𝑒𝑎𝑛 =

23.10, 𝑠 .𝑑 . = 1.29). Eight participants had prior experiences with
AR HMDs. All of them reported they were able to clearly see all
the virtual objects during the experiment.

We used a Microsoft HoloLens 2 AR HMD for this user study.
It has a horizontal field-of-view (FoV) of 43°, a vertical FoV of 29°,
and a 2K display resolution. While the program was deployed and
run on the HoloLens 2, we connected the headset to a desktop
PC to monitor participants’ behavior in real time. The program
was developed using C# in Unity3D with MRTK (Microsoft Mixed
Reality Toolkit).

Prior work has suggested that luminance levels of the environ-
ment would affect human eyes’ pupil variation, and as such affect
target selection accuracy [14]. We thus conducted this user study
in an empty room without natural light, where participants would
face a white wall approximately 2.5 meters away from them, and
the holographic projection would be projected two meters in front
of the participants. Participants sat in a chair to complete the ex-
periment (see Figure 2.LEFT).

4.2 Task
We adopted a similar Fitts’ ring design (ISO9241-9) as in previous
works [54, 63]. There were 21 virtual grey spheres in front of a
participant. In each trial, one sphere would turn blue, representing
the target for that trial, and the participant needed to move the
gaze-based cursor to select it. If a target was selected, the next target
would appear opposite to it, which yielded a consistent movement
amplitude for all selections. Overall, the alternating sequence pro-
ceeded in a clockwise manner (see Figure 2. RIGHT). To simulate
users’ selection behavior in a real-world scenario, we asked them
to select their target comfortably and naturally.

4.3 Input Mechanisms
We included two input confirmationmechanisms: air tap and blinking—
both of them were common in gaze-based selection but could po-
tentially lead to different eye and head endpoints. Air tap requires
participants to perform a pinch action with their dominant hand.
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Blinking requires participants to close and open their eyes to con-
firm the selection.

We followed a previous approach [43, 44] to detect eye blinks:
the system checked if the HoloLens 2 headset lost eye tracking data
(which happened when eyes were closed) for a certain period of
time. We run a pilot study with 5 participants to determine the
time duration threshold for blinking with 0.1s, 0.15s, and 0.2s, and
asked participants to complete an additional condition using air
tap for comparison. We collected 900 trials for each condition. Our
results showed that using a 0.1s time threshold would lead to a high
error rate (9.7%), most of which were false positives due to users’
spontaneous blinking [34]. A threshold of 0.15s received a 6.2%
error rate, which was comparable to air tap (6.4%). A 0.2s threshold
received the lowest error rate (4.6%). However, participants reported
that using a 0.2s threshold could cause extra eye fatigue compared
to a 0.15s threshold. Thus, we chose a threshold of 0.15s for the
formal experiments. This threshold also aligns with a previous
work [43].

Head and eye endpoints were recorded if a selection input was
triggered. For air tap, the endpoints were logged at the moment of
the registration of a pinch action. For blinking, the endpoints were
determined based on the timestamp that the HoloLens 2 headset
received the last valid gaze-pointing data before the blinking action.
When a user closes her eyes, the HoloLens 2 loses the eye tracking
data. During this period, the eye cursor would stay stationary at
the position right before the eye-close event. We carefully pre-
processed the collected data to ensure that irregular data generated
from the two input mechanisms were not used for further analyses
(discuss more in Section 4.5).

4.4 Design and Procedure
Our study used a 6 × 3 × 2 within-subjects design with three factors:
movement amplitude A (14°, 17°, 20°, 23°, 26°, and 29°), target width
W (1.5°, 1.75°, and 2.0°)1, and confirmation mechanisms CM (air
tap and blinking). As mentioned, due to the limited FoV of an AR
HMD, it is common that a virtual object appears outside of users’
FoV. We conducted preliminary tests to determine the values of
A and W so that three different cases were tested. (1) When A
was 14° or 17°, users could observe and select the objects without
moving their head, i.e., the entire Fitts’ ring was inside the FoV. (2)
When A was 20° or 23°, it was possible for users to select the target
without head movement but mild eye fatigue/discomfit may occur.
The head movements were dependent on individual preference [51].
(3) When A was 26° or 29°, users could not see the target from the
initial position, so they had to move their head to support the target
selection. We adjusted the values ofW accordingly to ensure that
no object occlusions would happen in any condition.

The experiment was divided into two sessions by CM, the first
session used air tap, and the second used blinking. This was to
prevent eye fatigue generated in the blinking condition to affect
the selection performance in the air tap condition in reverse order.
We also ensured that participants had enough rest between the
two sessions to prevent potential order effects. Each A×W com-
bination contained 21 targets, but the data of the first target was

1The absolute distance were 488.60mm, 539.30mm, 698.00mm, 802.70mm, 907.40mm,
and 1012.70mm for A, 52.34mm, 61.08mm, and 69.80mm forW, and 2m for depth.

removed because of the short amplitude (the distance between the
start point and the first target was 0.5*A). In each CM condition,
we applied a Latin-Square design to W and A accordingly. Even-
tually, we collected 6 A × 3 W × 2 CM × 20 participants × 20
repetitions = 14,400 trials of data, including eye trajectories, head
trajectories, and endpoints. The trajectories and endpoints were in
angular representations using a spherical coordinate system, which
consisted of an x-axis representing the direction of movement and
a y-axis perpendicular to it. The origin was placed at the center of
the target [63].

Before the experiment, participants were first asked to complete a
questionnaire to collect their demographic information. Then, they
were briefed about the research goal, task, and controls, followed
by an introduction to the AR HMD. After that, the participants
wore the HMD and run an eye calibration procedure. A training
session without a time limit was given before the formal trials. As
a result of the inaccuracy of the calibration system, we took the
following steps to carefully calibrate the eye tracking system: (1)
maintaining the same physical environment for all participants to
minimize the influence of external factors, such as lighting and
background distractions; (2) requiring participants to follow the
calibration procedure strictly; (3) during the training phase, we
proactively asked the participants if they felt the cursor did not
follow their eye movements or was inaccurate when looking at a
certain position, and if so, they were asked to re-calibrate their eyes.
Participants could practice as much as they wanted to ensure that
they got familiar with the device and the controls.

We required participants to orally say ‘start experiment’ before
aligning their head and starting the formal trials. The head positions
were calibrated at the beginning of the training session and formal
trials. The whole experiment lasted approximately 50 minutes per
participant.

4.5 Outliers Removal
We removed the following three types of outliers: (1) Data trials that
exceeded three times the standard deviations from the averaged
results in the x-axis, y-axis, or movement time following previous
works [25, 63]. Through this process, 155 (or 2.15% of the total
number of trials) and 144 trials (1.58%) were removed from the air
tap and blinking condition, respectively. (2) After implementing step
1, we could still find data trials that contained abnormally short
trajectories, which could be because of participants mistakenly
confirming the selection twice (i.e., double-confirmation). Therefore,
We further removed 286 (3.79%) in the air tap condition and 436
(6.05%) trials in the blinking condition if the selection time was
smaller than 0.4s or the distance between the eye endpoint and
the previous target center was less than 4°. (3) We also removed
the sub-sequential data trial of the double-confirmation trial if
the participant did not select the target correctly. We wanted to
minimize the impact of double-confirmation altering the movement
trajectory of the participants once they detected the mis-triggering
of the selection. We removed 269 (3.73%) and 349 (4.84%) trials from
the air tap and the blinking condition, respectively. In total, 710
trials of data were removed in the air tapping condition, and 899
trials of data were removed in the blinking condition, representing
9.8% and 12.4% of total trials in each condition.
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In the following section, we present empirical results based on
eye endpoints (Section 4.6), relative head endpoints (Section 4.7),
and two confirmation mechanisms (Section 4.8). We then provide
our interpretation/discussion of the results (Section 4.9).

4.6 Results on Eye Endpoints
4.6.1 Normality tests and data processing. Wefirst runKolmogorov-
Smirnov (KS) tests to examine the normality of the distribution of
endpoints in the x- and y-axis. The KS tests were not able to reject
the hypothesis that the data followed a Gaussian distribution. There-
fore, for simplicity, we treated all sets of endpoints to be normally
distributed. We then used maximum likelihood estimation (MLEs,
mle() inMATLAB) to obtain themean 𝜇 and standard deviation𝜎 of
the Gaussian distribution. The correlation 𝜌 between the endpoints
in two axes was calculated using the function of corrcoef() in
MATLAB. We also calculated the average movement time of target
selection (𝑇𝑖𝑚𝑒) for each condition (𝐴 ×𝑊 ×𝐶𝑀) as an additional
measure. We derive the values of the following six dependent vari-
ables based on our data: 𝜇𝑥 , 𝜎𝑥 , 𝜇𝑦 , 𝜎𝑦 , 𝜌 , and𝑇𝑖𝑚𝑒 . Figure 3 shows
example distributions of eye endpoints whenW is 1.5°.

4.6.2 Significance Tests. We conducted repeated-measures ANOVA
(RM-ANOVA) regarding the six dependent variables. Table 1 sum-
marizes the factors that had a statistically significant main effect
on the dependent variables (please refer to our supplementary ma-
terials for the full results). The degree of freedom was adjusted
by Greenhouse-Geisser if the sphericity was not met. Overall, the
results indicated that𝑊 had a significant main effect on 𝜇𝑥 and
𝜎𝑥 ; 𝐴 had a significant main effect on 𝜇𝑥 and 𝜎𝑦 ; while 𝐶𝑀 had a
significant main effect on 𝜎𝑦 . Additionally, we found a significant
interaction effect of𝑊 ×𝐶𝑀 on 𝜌 .

4.6.3 Linear Regressions. We found strong linear relationships
between the factors and the dependent variables through linear
regressions (see Figure 4). According to the linear regression re-
sults, we identified that: 𝜇𝑥 = −0.1541𝑊 + 0.1399 (𝑅2 = 0.9275),
𝜇𝑥 = 0.0084𝐴 − 0.3101 (𝑅2 = 0.8824), 𝜎𝑥 = 0.1243𝑊 + 0.4115 (𝑅2 =
0.9829), and 𝜎𝑦 = 0.0071𝐴 + 0.4307 (𝑅2 = 0.9444).

Table 1: Significant results of RM-ANOVAs for the eye-based
endpoints in Study 1 (𝛼 = .05). DV represents dependent
variable.

Factor DV 𝑑 𝑓 effect 𝑑 𝑓 error 𝐹 𝑝 𝜂2𝑝

𝑊 𝜇𝑥 1.722 32.716 3.549 .047 .157
𝐴 𝜇𝑥 3.938 74.822 6.071 .000 .242

𝑊 𝜎𝑥 2 35.728 4.304 .023 .185
𝐴 𝜎𝑦 3.305 63.642 5.318 .002 .219
𝐶𝑀 𝜎𝑦 1 19 9.28 .007 .328

𝑊 ×𝐶𝑀 𝜌 1.985 37.712 3.432 .043 .153

4.7 Results on Relative Head Endpoints
The head often moves in conjunction with the eyes when selecting
a target using the eyes. The technique of using the eyes and head si-
multaneously for target selection has previously been explored [52].

Figure 3: Distribution density map of eye endpoints when W
is 1.5°. The red circles represent the boundaries of the targets.

To explore their potential collaborative behavior, we define a relative
head endpoint as the relative position (in angular representation) of
the head endpoint with regard to the corresponding eye endpoint in
a selection trial. That is, (𝑥𝑅𝐻𝐸 , 𝑦𝑅𝐻𝐸 ) = (𝑥𝐻𝐸 , 𝑦𝐻𝐸 ) − (𝑥𝐸𝐸 , 𝑦𝐸𝐸 )
where 𝑅𝐻𝐸 stands for Relative Head Endpoint, 𝐻𝐸 stands for Head
Endpoint, and 𝐸𝐸 stands for Eye Endpoint. This allowed us to quan-
tify the movement behavior of the head in relation to the eyes.
Figure 5 shows examples of distributions of relative head endpoints
whenW is 1.5°. We treated the direction of gaze movement towards
a target as the positive direction of the x-axis.

4.7.1 Normality tests and data processing. Similar to eye endpoints
data, we run KS tests to examine the normality of distribution of
relative head endpoints in the x- and y-axis. The KS tests were
not able to reject the normality hypothesis, and we treated all sets
of endpoints to be normally distributed. We also calculated 𝜇ℎ𝑒𝑎𝑑𝑥 ,
𝜎ℎ𝑒𝑎𝑑𝑥 , 𝜇ℎ𝑒𝑎𝑑𝑦 , 𝜎ℎ𝑒𝑎𝑑𝑦 , and 𝜌ℎ𝑒𝑎𝑑 values as in the previous section.
Note that, we use a superscript of ℎ𝑒𝑎𝑑 in the math expressions
hereafter to represent relative head endpoints.

4.7.2 Significance tests. Results of RM-ANOVAs showed that𝑊 ,
𝐴, and 𝐶𝑀 all had significant main effects on 𝜇ℎ𝑒𝑎𝑑𝑥 . Meanwhile,
𝑊 and 𝐴 had an interaction effect on 𝜇ℎ𝑒𝑎𝑑𝑥 . Additionally, 𝐴 had
a significant main effect on 𝜎ℎ𝑒𝑎𝑑𝑥 . Factors that led to statistically
significant main effects were summarized in Table 2. Please refer
to the supplementary materials for the full results.

4.7.3 Linear Regressions. Due to the interaction effect of𝑊 ×𝐴,
we did not perform linear regressions of 𝐴 and𝑊 on 𝜇ℎ𝑒𝑎𝑑𝑥 sep-
arately but combined both of them into a single regression as
shown in Figure 6. The expression for the air tap condition is
𝜇ℎ𝑒𝑎𝑑𝑥 = −1.8068 − 1.0664𝑊 − 0.1960𝐴 (𝑅2 = 0.8248), and for the
blinking condition is 𝜇ℎ𝑒𝑎𝑑𝑥 = −2.4852 − 0.9959𝑊 − 0.2069𝐴 (𝑅2 =
0.8620). We also performed linear regression of the main statis-
tical effect between 𝐴 and 𝜎ℎ𝑒𝑎𝑑𝑥 , with the final expression as
𝜎ℎ𝑒𝑎𝑑𝑥 = 5.4419 − 0.0142𝐴 (𝑅2 = 0.7307).
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Figure 4: LEFT: Linear regression of the mean of 𝜇𝑥 on W. MIDDLE-LEFT: Linear regression of the mean of 𝜇𝑥 on A. MIDDLE-
RIGHT: Linear regression of the mean of 𝜎𝑥 on W. RIGHT: Linear regression of the mean of 𝜎𝑦 on A.

Figure 5: Distribution densitymap of relative head endpoints.

Table 2: Significant results of RM-ANOVAs for the relative
head-pointing endpoint in Study 1 (𝛼 = .05).

Factor DV 𝑑 𝑓 effect 𝑑 𝑓 error 𝐹 𝑝 𝜂2𝑝

𝑊 𝜇ℎ𝑒𝑎𝑑𝑥 1.095 20.797 18.728 .000 .496
𝐴 𝜇ℎ𝑒𝑎𝑑𝑥 2.763 52.488 5.262 .004 .217
𝐶𝑀 𝜇ℎ𝑒𝑎𝑑𝑥 1 19 5.280 .033 .217

𝑊 ×𝐴 𝜇ℎ𝑒𝑎𝑑𝑥 1.999 37.879 3.371 .009 .151

𝐴 𝜎ℎ𝑒𝑎𝑑𝑥 3.029 57.556 2.752 .050 .127

Figure 6: Regressions for relative head orientation in Study 1.
𝜇ℎ𝑒𝑎𝑑𝑥 was fitted to different𝑊 ×𝐴 combinations using planes.
LEFT: Fitting results for the air tap condition. RIGHT: Fitting
results for the blinking condition.

Figure 7: Comparison of selection accuracy for both air tap
and blinking conditions in each𝑊 ×𝐴 combination.

4.8 Results on the Two Confirmation
Mechanisms

4.8.1 Eye and Relative Head Endpoints. From Table 1, 𝐶𝑀 has a
significant main effect on 𝜎𝑦 in eye-based endpoint distribution.
Results showed that gaze-based selection using air tap as the con-
firmation mechanism (𝑚𝑒𝑎𝑛 = 0.54, 𝑠 .𝑑 . = 0.19) led to a smaller
𝜎𝑦 than using blinking (𝑚𝑒𝑎𝑛 = 0.63, 𝑠 .𝑑 . = 0.25). In addition,
𝐶𝑀 also has a significant main effect on 𝜇ℎ𝑒𝑎𝑑𝑥 (Table 2), with air
tap (𝑚𝑒𝑎𝑛 = −7.8, 𝑠 .𝑑 . = 3.15) has a larger 𝜇ℎ𝑒𝑎𝑑𝑥 than blinking
(𝑚𝑒𝑎𝑛 = −8.68, 𝑠 .𝑑 . = 2.52).

4.8.2 Movement Time (MT). We verified Fitts’ law by performing a
linear regression between the index of difficulty (ID) and movement
time (MT). The fitting results of air tap 𝑅2 = 0.8281 and blinking
𝑅2 = 0.8917 were high, indicating that gaze-based selection with
both confirmation mechanisms followed Fitts’ law. Results from a
paired sample t-test showed that there was a significant effect of𝐶𝑀
on MT (𝑡17 = −5.153, 𝑝 < .001). Air tap (𝑚𝑒𝑎𝑛 = 1.31𝑠, 𝑠 .𝑑 . = .16)
led to a shorter time than blinking (𝑚𝑒𝑎𝑛 = 1.38𝑠, 𝑠 .𝑑 . = .14).

4.8.3 Selection Accuracy. We compared the two confirmationmech-
anisms (𝐶𝑀) regarding their accuracy (i.e., whether an endpoint
falls within the target boundaries). The selection accuracy in each
𝑊 × 𝐴 combination regarding the two 𝐶𝑀 conditions is summa-
rized in Figure 7. The average selection accuracy was 71.8% for
air tap and 69.3% for blinking. Results from a paired sample t-test
revealed a significant main effect of 𝐶𝑀 on selection accuracy
(𝑡17 = −2.278, 𝑝 = .036).

4.9 Discussion
4.9.1 Gaze-based selection endpoint distributions. An eye selection
endpoint was produced once a user confirmed the selection in a trial.
After the repetitive selection process, the eye endpoints formed
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a distribution, which was shown to follow a bivariate Gaussian
(normal) distribution. Our significant tests and linear regression
analyses suggested that the distribution mean 𝜇 and standard devi-
ation 𝜎 varied as we changed𝑊 and 𝐴.

Our results suggest that both𝑊 and𝐴 could influence 𝜇𝑥 , poten-
tially in a linear relationship. Specifically, increasing𝑊 decreased
𝜇𝑥 (negative linear relationship 𝑅2 = 0.93), and increasing 𝐴 in-
creased 𝜇𝑥 (positive linear relationship 𝑅2 = 0.88). The influence
of𝑊 on 𝜇𝑥 could be potentially attributed to the “lazy effect”, as
identified by a previous work [63]. That is, participants were more
inclined to shorten their movement distance by performing the se-
lection earlier. This phenomenon got amplified as the target width
increased. However, the relationship between 𝐴 and 𝜇𝑥 showed
that the larger the 𝐴, the closer the eye-based endpoint was to the
center of the target along the x-axis. This was unexpected and in
contrast to the relationship of 𝐴 and 𝜇𝑥 for head-based selection
mentioned in [63].

The positive correlation between 𝐴 and 𝜇𝑥 may not be solely
due to the eye behavior—head and eye-head coordination may be
another factor. As𝐴 increases, 𝜇ℎ𝑒𝑎𝑑𝑥 is further away from its origin
while 𝜇𝑥 gets closer to the eye endpoint (see Figures 4.MIDDLE-
LEFT and 6). This means participants moved their head more when
𝐴 increased, because the limited FoV of the AR headset forced par-
ticipants to move their head when 𝐴 was large and targets were
outside of their vision. With the support of head movements, partic-
ipants can select the target with their eye gaze more comfortably;
thus, this effect could lead to a positive correlation between 𝐴 and
𝜇𝑥 , with 𝜇𝑥 getting closer to the target center when the distance was
larger. On the other hand, when 𝐴 was small and the targets were
within the FoV, participants may not move their head, and the 𝜇𝑥 did
not show such a trend (see𝐴=14 and 17 in Figure 4.MIDDLE-LEFT).

Our results also showed that𝑊 has a significant main effect
on 𝜎𝑥 (see Table 1). Figure 4.MIDDLE-RIGHT revealed a positive
correlation between𝑊 and 𝜎𝑥 . These results are in line with the
findings in finger-based selection in touch screens [6] and head-
based selection in VR HMD [63]. In addition, 𝐴 has a significant
main effect on 𝜎𝑦 : the greater the 𝐴, the higher the 𝜎𝑦 . That is,
as 𝐴 increases, the eye endpoint in the perpendicular direction of
movement becomes more spread. This finding is also in line with
prior work [22].

4.9.2 Relative head endpoints distribution. A relative head endpoint
represents the relative position of the head endpoint with regard to
the corresponding eye endpoint. We found significant main effects
of𝑊 , 𝐴, and𝑊 × 𝐴 on 𝜇ℎ𝑒𝑎𝑑𝑥 . From the results, one observation
was that the values of 𝜇ℎ𝑒𝑎𝑑𝑥 were always smaller than zero. This
resonated with the findings by Sidenmark et al. [51, 52] who showed
that while head movements are often coupled with eye movements,
users seldom move their head fully toward a target to which they
have shifted their gaze. Sincewe treated the eyemovement direction
as the positive axis, the relative head endpoints always resulted in
negative values.

From Figure 6, we also observed that for both 𝐶𝑀 conditions,
relative head endpoints became closer to the eye endpoints as 𝐴
increased. Previous research suggested that users could move their
heads earlier than their eyes to help locate the target if the target
was outside of the FoV [51]. In our case, a larger𝐴 makes the target

to be further away from the center of the view, even outside of the
FoV. Therefore, we hypothesized that with a large 𝐴, the head may
provide more assistance in locating the target, resulting in a close
distance between the head and eye endpoint. However, the influence
of𝑊 and𝑊 × 𝐴 on 𝜇ℎ𝑒𝑎𝑑𝑥 was hard to parse from our results. It
was maybe because the difference between different levels of𝑊
(1.5°, 1.75°, and 2.0°) was too small to produce meaningful patterns.

Furthermore, we observed a negative linear correlation between
𝐴 and 𝜎ℎ𝑒𝑎𝑑𝑥 . This suggested that when the participants utilized
their heads to assist with target selection, the variances in their
head endpoints became smaller when the target was located further
away from the center of the view.

4.9.3 The impact of different confirmation mechanisms. 𝐶𝑀 has
a significant main effect on 𝜎𝑦 in the eye-based endpoint distri-
bution and 𝜇ℎ𝑒𝑎𝑑𝑥 . Gaze-based selection using air tap led to fewer
variances of endpoint in the y-axis (i.e., the perpendicular direction
of movement) and made the relative head endpoints closer to the
gaze endpoints than using blinking. Additionally, gaze-based selec-
tion using air tap was slightly faster and more accurate than using
blinking.

All these findings imply that participants were able to perform a
more stable, efficient, and accurate gaze-based selection using the
air tap as the input confirmation mechanism. This is in line with
our expectation—air tap uses hand as an additional confirmation
modality which does not interrupt the eye-based target pointing
procedure. On the contrary, blinking uses the eyes for both pointing
and confirmation so it became difficult for the eyes to fine-tune
their direction for accurate selection. Furthermore, since blinking
is an eye-based approach, it is also affected by the eye-tracking
modules. Thus, users may have a more diverse behavior pattern and
worse performance when using blinking as the input mechanism
in gaze-based selection. Given the significant main effect of 𝐶𝑀 on
𝜎𝑦 and 𝜇ℎ𝑒𝑎𝑑𝑥 , we constructed two dedicated models for the two
confirmation mechanisms (see next section).

The average selection accuracy was 71.8% for air tap and 69.3%
for blinking in our study, which was relatively low compared to
previous works [35]. One possible reason is that our targets were
quite small (from 1.5◦ to 2.0◦) which represented amore challenging
scenario for gaze-based selection with our current equipment [63].

4.9.4 Summary - Study 1. In this study, we collected eye and head
endpoint data in a gaze-based selection task in AR HMD and ex-
plored how the factors including W, A, and CM can affect the
endpoint distributions. We found target widths𝑊 , movement am-
plitudes 𝐴, and input confirmation mechanisms 𝐶𝑀 all had sig-
nificant effects on either center or variance of the eyes or head
endpoint distributions. According to these results, our next step is
to fit the unimodal model and multimodal model.

5 MODEL FITTING
In Section 3.1, we described that to calculate the likelihood of a user
selecting each target (i.e., making a target prediction), we needed
to collect the following information from the data: (1) the endpoint
distribution of eyes when users select potential targets with differ-
ent widths and distances for both unimodal and multimodal models;
and (2) the endpoint distribution of the head by treating the gaze
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pointing direction as the origin (i.e., the relative head endpoint
distribution) when users select potential targets for the multimodal
model. These two endpoint distributions were modeled as bivariate
Gaussian distributions as in previous works [6, 63], so we needed
to obtain N(𝝁, 𝚺) for each of them, where 𝝁 represents the center
of the distribution (a 2D vector, in both x- and y-axis) and 𝚺 is the
covariance matrix, containing the variances of the distribution and
the correlations (a 2 × 2 matrix).

For both models, we first identified the factors that had signifi-
cant effects on the response variables (e.g., from the first study, we
found𝑊 and 𝐴 had significant main effects on 𝜇𝑥 ). As in previous
research [63], we then applied a linear regression to quantify the
relationship between the factors and the response variable. For
example, we built a linear regression model 𝜇𝑥 = 𝑒𝑊 + 𝑓 𝐴 + 𝑔 for
eye endpoint distribution and determined variable 𝑒 , 𝑓 , 𝑔 based
on the empirical data from Study 1. We assumed the correlations
between the two axes to be 0 for simplicity.

5.1 Modeling the likelihood function of
endpoint distribution for eyes-only

Based on the significance testing results from the first study, we
constructed a bivariate-Gaussian distribution model for gaze-based
pointing selection in AR HMD. This endpoint distribution model
of eyes can be used as the likelihood model in Bayesian theory,
thus forming our final unimodal model. The model parameters are
shown below.

𝝁 =

[
𝑒𝑊 + 𝑓 𝐴 + 𝑔

0

]
, 𝚺 =

[
(𝑎 W + 𝑏)2 0

0 (𝑐 A + 𝑑)2
]

(7)

𝑊 and 𝐴 are the target width and the movement amplitude,
while 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔 are constants. Using the data collected in the
first study, as mentioned in Section 4.6.3, we have: 𝑎 = 0.1243, 𝑏 =

0.4115, 𝑒 = −0.1541, 𝑓 = 0.0084 and 𝑔 = −0.1702. Since the input
confirmation mechanisms 𝐶𝑀 has a significant main effect on 𝜎𝑦 ,
we have 𝑐 = 0.0078, 𝑑 = 0.371 when 𝐶𝑀 is air tap, and 𝑐 = 0.0064,
𝑑 = 0.4904 when 𝐶𝑀 is blinking.

5.2 Modeling the likelihood function of relative
endpoint distribution of head

To construct our multimodal model, we need a relative head end-
point distribution model in addition to the eye endpoint distribution
model. Therefore, we quantified how factors may influence the rela-
tive head endpoint distribution through another bivariate Gaussian
distribution by treating the eye position as an origin. The model
parameters are presented below.

𝝁 =

[
𝑑𝑊 + 𝑒𝐴 + 𝑓

0

]
, 𝚺 =

[
(𝑎 A + 𝑏)2 0

0 𝑐

]
(8)

𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are constant values. Given the statistical main effect
between the 𝐶𝑀 for 𝜇𝑥 , we have two sets of 𝑑, 𝑒, 𝑓 for the two 𝐶𝑀 .
Our data suggest, as mentioned in Section 4.7.3, 𝑎 = −0.0142, 𝑏 =

5.4419. 𝑐 = 5.2460 (the mean value of 𝜎𝑦 ), 𝑑 = −1.0664, 𝑒 =

−0.1960, 𝑓 = −1.8968 for air tap, and 𝑑 = −0.9959, 𝑒 = −0.2069, 𝑓 =

−2.4852 for blinking.

6 USER STUDY 2: SELECTION PERFORMANCE
EVALUATION

The purpose of this study is threefold. (1) To assess whether our
two models have enhanced selection accuracy compared to the ap-
proach based on Visual Boundary Criterion (VBC). (2) To verify the
reliability and robustness of our models in complex environments.
(3) To check the predictive capability of our models in different
FoVs, especially in the out-of-view cases.

6.1 Participants and Apparatus
Sixteen participants were recruited (3 females and 13 males; aged
between 22 and 26,𝑚𝑒𝑎𝑛 = 23.50, 𝑠 .𝑑 . = 1.366). Thirteen partici-
pants had prior experience with AR HMDs. All of them reported
they could see the virtual environment clearly during the experi-
ment. The experiments were conducted using the same apparatus
and in the room with the same setup as in the first study.

6.2 Task, Design, and Procedure
We compared three techniques in this experiment: VBC-based se-
lection (baseline scenario, the gaze pointer can successfully select
an object only if it is within the object), target prediction based on
the unimodal model, and target prediction based on the multimodal
model. VBC has been used as a common interaction mechanism in
virtual environments, such as text entry [44], UI interaction [10]
and game context [37]. Notably, VBC is a single-step approach that
only requires users to perform one selection input. There are other
eye-based selection techniques that could be more accurate [31, 35].
However, many of them used a multi-step approach, where users
determine the selection region first and then fine-tune their selec-
tion in a second stage. In this work, we chose VBC-based selection
as our baseline for comparison because it is simple and prevalent
in off-the-shelf applications.

We modified the Fitts’ ring with four distractors surrounding the
intended target according to a previous work [63]. The intended
target was in blue, while the distractors were in grey and displayed
at the target’s top, down, left, and right sides (see Figure 8). The
widths of the distractors were set to 2° in all trials. The distances
between the distractors and the target were set the same as the
width of the target (W ) in each trial. In other words, if the W
decreases, the distance between the distractor and the target also
decreases, rendering a more challenging selection task. Distractors
may alter a user’s selection behavior to avoid potential errors and
we wanted to verify if our models could still be useful in this case.
Like in the first study, the participants were asked to select the
target comfortably and naturally.

A 3 × 3 × 2 within-subjects design was used in this study with
three factors: movement amplitude𝐴 (20°, 30°, and 40°), target width
𝑊 (0.5°, 1°, and 2°)2, and 𝐶𝑀 (air tap and blinking). We have in-
cluded an extreme condition of 𝐴 = 40° in this study as we wanted
to test the generalizability of our model to conditions with longer
head movement distances. In terms of target width, we also in-
cluded another extreme case of𝑊 = 0.5°, where the target was
very small and the distractors were very close to the target. These
conditions represent complex environments that users may face
2The absolute distance were 698mm, 1047mm and 1396mm for A, 8.75mm, 17.45mm,
and 34.90mm for W, and 2m for depth.
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Figure 8: An example of an experimental task in Study 2. The
target is surrounded by four distractors.

in a real application (e.g., immersive analytics [45]. Each 𝐴 ×𝑊

combination still contained 21 targets, while only the intended tar-
get and surrounded distractors would appear in each trial to avoid
the occlusions. The order of the conditions was counterbalanced as
in the first study. In addition, we followed the same experimental
procedure. Participants took approximately 15 minutes to complete
the whole experiment. In total, we collected 3 𝐴× 3𝑊× 2 𝐶𝑀× 16
participants × 20 repetitions = 5760 trials of data in this study.

Once the participants confirmed a selection, the program auto-
matically calculated its correctness based on the endpoint(s) ac-
cording to three selection methods (VBC, unimodal model, and
multimodal model; the variable referred to as technique). We de-
cided not to provide visual feedback of a selection (e.g., highlighting
an object if the cursor is “on” the target) because (1) rapid, noisy
eye movements may cause the feedback to bounce between objects
when selecting a target in a dense environment, which could be
confusing and mentally fatiguing [42, 61] and (2) we wanted to test
our proposed techniques without altering the visual interfaces that
provide implicit assistance.

6.3 Results
We pre-processed the data as in the first study. In total, we removed
65 trials (2.2%) in the air tap condition and 139 trials (4.8%) in the
blinking condition. Figure 9 shows the average selection accuracy
of VBC-based selection, unimodal model-supported selection, and
multimodal model-supported selection in each𝑊 ×𝐴 combination.

Results of RM-ANOVAs showed that A,W, and CM all had a sig-
nificant main effect on selection accuracy (𝐹2,30 = 224.171, 𝑝 < .001;
𝐹2,30 = 64.771, 𝑝 < .001; and 𝐹1,15 = 10.945, 𝑝 = .005, respectively).
In addition, technique also had a significant main effect on selection
accuracy (𝐹2,30 = 13.854, 𝑝 < .001). The average accuracy of VBC =
62.43%, unimodal model = 95.02%, and multimodal model = 94.28%.

Furthermore, we performed RM-ANOVAs to investigate whether
there are significant differences between the three techniques in
terms of selection accuracy in each𝑊 ×𝐴 ×𝐶𝑀 condition. Results
of post-hoc pairwise comparisons adjusted by Bonferroni correc-
tion are summarized in Figure 9. Overall, we found significant per-
formance differences between VBC and the two prediction-based
approaches (unimodal and multimodal models) in almost all condi-
tions for both confirmation mechanisms.

Figure 9: Selection accuracy of the three techniques in air
tap (TOP) and blinking (BOTTOM) conditions for each𝑊 ×𝐴

combination.

For small targets, i.e., with a width of 0.5°, the accuracy of target
selection using VBC is particularly low (below 41.50%). Compared
to VBC, the two prediction-based approaches (unimodal model
and multimodal model) increased the selection accuracy consider-
ably. Notably, for the condition W=0.5° and A=20°, the accuracy
improvement was the most significant—the accuracy gains of our
unimodal model reached 61.98% and 61.93% for air tap and blinking,
respectively. The multimodal model produced similar results to
the unimodal model. For the condition of W=0.5° and A=40°, the
accuracy of both our models in air tap is greater than 99%. Both
examples illustrate that our models could work particularly well
for small targets. For larger targets, with a maximum target width
of 2° in our setting, VBC can achieve an accuracy of around 89.2%.
Our model further improved the accuracy to around 93.3%.

6.4 Discussion
6.4.1 VBC vs. target prediction models. We found that while de-
creasing𝑊 greatly affected the accuracy for VBC-based selection,
the target prediction accuracy based on our models remained sta-
ble. Our models significantly improved target selection accuracy
in conditions where the target size was less than or equal to 1°.
Notably, for the smallest target (𝑊 = 0.5°), the models achieved
99% accuracy with air tap and over 95% with blinking when both
𝐴 = 30° and 𝐴 = 40°. These results demonstrated that our models
can achieve highly accurate target prediction without altering the
visual appearance of a user interface and can significantly boost the
accuracy for small targets compared to the VBC-based approach.

6.4.2 Unimodal model vs. multimodal model. We designed the
multimodal model to further incorporate the head information
to help eliminate the noise of eyes or their tracking devices. Our
results showed that the unimodal model and the multimodal model
achieved comparable performance across different experimental
conditions. We found that the multimodal model could be more
useful for scenarios that require longer head movement distances.



CHI ’23, April 23–28, 2023, Hamburg, Germany Yushi Wei, Rongkai Shi, Difeng Yu, Yihong Wang, Yue Li, Lingyun Yu, and Hai-Ning Liang

When targets were placed far away (e.g.,𝐴 was larger than 20°), the
multimodal model demonstrated excellent performance regardless
of confirmation mechanisms, especially for small targets. However,
when the target was closer to a user’s front-facing direction, e.g.,
𝐴 was less than 20°, the head movement did not contribute much
to the gaze-pointing movement in such cases and created more
uncertainty to the prediction. In other words, the uncertainty of
head pointing direction was high when 𝐴 is small, thus reducing
the prediction accuracy of the multimodal model. For example,
the selection accuracy for the multimodal model in the condition
𝑊 = 2° and𝐴 = 20°was relatively low as compared to the unimodal
model (Figure 9). Therefore, we recommend using the unimodal
model for simplicity. The multimodal model may achieve superior
performance when eyes are actively looking for targets, so the
head-pointing information may provide more confirmation on the
“region” the target might locate. However, future work is required
to verify this assumption.

In summary, both target prediction models are more robust and
stable than the baseline. They can be applied to assist gaze-based
target selection in scenarios with a variety of targets and different
confirmation mechanisms.

6.4.3 Generalizability and Reproducibility. Our models leveraged
linear regressions to approximate how interface features like object
size and distance may influence eye or head endpoint distributions.
Linear regression is a relatively more robust approach compared to
nonlinear-based models which could cause overfitting. Therefore,
we are confident that our model can be generalized to other similar
conditions. Notably, we considered extreme cases (e.g.,𝑊 = 0.5°
and 𝐴 = 40°) and distractors in the second study, which were not
counted when we fit the model with the data from the first study.
Our models were still able to produce highly accurate predictions
in these unseen conditions.

Future work may verify our models with new eye-tracking de-
vices and interface layouts. We hypothesized that while the fitting
parameters may be slightly different, the general gaze-based selec-
tion behavior may not change significantly. But this assumption
needs to be evaluated in future research. We have opensourced our
dataset collected from the two studies that are available at https:
//github.com/Yushi-Wei/Modeling-Endpoint-Distributions. There-
fore, future research can reproduce our models and compare their
results with ours.

7 LIMITATIONS AND FUTUREWORK
We identified some limitations and possible avenues for future re-
search. First, while our model has been verified to produce promis-
ing results regarding static targets with a circular shape in a con-
trolled environment with simplified background and lighting, we
plan to extend our findings to targets with arbitrary shapes and
complex backgrounds and lighting environments in the future. We
also want to further investigate how visual feedback (e.g., high-
lighting an object when the cursor is “on” the object) may influence
endpoint distributions.

Second, we used a controlled experimental scheme (the Fitts’
ring), where participants could easily predict the next target that
they needed to select. This was reasonable to collect data on point-
ing behavior as searching was minimized. However, in many AR

target selection scenarios, searchingmight be necessary and a user’s
eye and head behavior might be different. In some other cases, tar-
gets might not even be located in front of a user; instead, they may
appear behind them. In these cases, the user must rotate their body
to select it. Previous work has demonstrated that there is a col-
laboration between the limbs and the head and eyes during target
selection [51]. It will be interesting to see how the behavior of the
searching and the movements of limbs can be incorporated into the
models.

Third, we used the most commonly accepted VBC as a bench-
mark when evaluating our model for better understanding, and in
the future, we prefer to use more diverse ways (e.g., selecting the
target closest to the cursor) to compare with the model to achieve
a more comprehensive understanding for different application sce-
narios.

Fourth, previous research indicated that the default eye cali-
bration system of the HoloLens 2 could lead to a wide range of
horizontal and vertical inaccuracies [1]. While we followed a strict
process of eye-tracking calibration, we could not fully eliminate all
errors. Therefore, our models might have incorporated those inac-
curacies when predicting the targets. Future work should replicate
the study when using a different eye tracker (e.g., HTC Vive Pro
Eye).

8 CONCLUSION
In this paper, we presented two novel models applicable to AR
HMD devices for predicting gaze-based selection. Both models (uni-
modal and multimodal) are based on endpoint distributions and
the Bayesian theory. In contrast to previous work, we propose the
concept of multi-modality in one of the models, considering the
collaborative role of the eyes and the head. We built our models
through a data collection study and tested their effectiveness in
another follow-up study. Our models significantly improved the
accuracy of object selection for small targets, achieving nearly 61%
improvement for targets with a visual width of 0.5° and approxi-
mately 32% improvement for targets with a visual width of 1°. The
study results also indicated that the multimodal model based on
eye and head endpoint distribution achieved similar performance
as the unimodal model with only the eye endpoint distribution.
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